Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 81

1.
2.

Coherent imaging of the cone mosaic in the living human eye.

Marcos S, Navarro R, Artal P.

J Opt Soc Am A Opt Image Sci Vis. 1996 May;13(5):897-905.

PMID:
8622176
3.

Determination of the foveal cone spacing by ocular speckle interferometry: limiting factors and acuity predictions.

Marcos S, Navarro R.

J Opt Soc Am A Opt Image Sci Vis. 1997 Apr;14(4):731-40.

PMID:
9088086
4.

Topography of the foveal cone mosaic in the living human eye.

Williams DR.

Vision Res. 1988;28(3):433-54.

PMID:
3188406
5.

High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy.

Ooto S, Hangai M, Sakamoto A, Tsujikawa A, Yamashiro K, Ojima Y, Yamada Y, Mukai H, Oshima S, Inoue T, Yoshimura N.

Ophthalmology. 2010 Sep;117(9):1800-9, 1809.e1-2. doi: 10.1016/j.ophtha.2010.01.042. Epub 2010 Jul 29.

PMID:
20673590
6.

Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects.

Marcos S, Tornow RP, Elsner AE, Navarro R.

Vision Res. 1997 Jul;37(14):1909-15.

PMID:
9274776
7.

Determination of human cone pigment density difference spectra in spatially resolved regions of the fovea.

Kilbride PE, Read JS, Fishman GA, Fishman M.

Vision Res. 1983;23(12):1341-50.

PMID:
6666036
8.

Flat-panel cone-beam computed tomography for image-guided radiation therapy.

Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA.

Int J Radiat Oncol Biol Phys. 2002 Aug 1;53(5):1337-49.

PMID:
12128137
9.

High-resolution imaging of the human retina with a Fourier deconvolution technique.

Catlin D, Dainty C.

J Opt Soc Am A Opt Image Sci Vis. 2002 Aug;19(8):1515-23.

PMID:
12152691
10.

Three-dimensional speckle-noise reduction by using coherent integral imaging.

Moon I, Javidi B.

Opt Lett. 2009 Apr 15;34(8):1246-8.

PMID:
19370132
11.

Real-time digital aperture sampling sensor.

Tai AM, Cederquist JN.

Appl Opt. 1987 Dec 1;26(23):5130-5. doi: 10.1364/AO.26.005130.

PMID:
20523494
12.

Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic.

Wojtas DH, Wu B, Ahnelt PK, Bones PJ, Millane RP.

J Opt Soc Am A Opt Image Sci Vis. 2008 May;25(5):1181-9.

PMID:
18451927
13.

Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine.

Ballrick JW, Palomo JM, Ruch E, Amberman BD, Hans MG.

Am J Orthod Dentofacial Orthop. 2008 Oct;134(4):573-82. doi: 10.1016/j.ajodo.2007.11.025.

PMID:
18929276
14.

Digital recording and numerical reconstruction of holograms: an optical diagnostic for combustion.

Xiao X, Puri IK.

Appl Opt. 2002 Jul 1;41(19):3890-9.

PMID:
12099597
15.

High-resolution retinal imaging of cone-rod dystrophy.

Wolfing JI, Chung M, Carroll J, Roorda A, Williams DR.

Ophthalmology. 2006 Jun;113(6):1019.e1. Epub 2006 May 2.

PMID:
16650474
16.

Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry.

McMahon MJ, Lankheet MJ, Lennie P, Williams DR.

J Neurosci. 2000 Mar 1;20(5):2043-53.

PMID:
10684905
17.

Computer simulation of a method for object reconstruction from stellar speckle interferometry data.

Walker JG.

Appl Opt. 1982 Sep 1;21(17):3132-7. doi: 10.1364/AO.21.003132.

PMID:
20396190
18.

Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea.

Bumsted K, Hendrickson A.

J Comp Neurol. 1999 Jan 25;403(4):502-16.

PMID:
9888315
19.

Spatial reconstruction of signals from short-wavelength cones.

Brainard DH, Williams DR.

Vision Res. 1993 Jan;33(1):105-16.

PMID:
8451835
20.

Spatially coherent colour image reconstruction from a trichromatic mosaic with random arrangement of chromatic samples.

Alleysson D.

Ophthalmic Physiol Opt. 2010 Sep;30(5):492-502. doi: 10.1111/j.1475-1313.2010.00771.x.

PMID:
20883332

Supplemental Content

Support Center