Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Pathogenic roles of CD14, galectin-3, and OX40 during experimental cerebral malaria in mice.

Oakley MS, Majam V, Mahajan B, Gerald N, Anantharaman V, Ward JM, Faucette LJ, McCutchan TF, Zheng H, Terabe M, Berzofsky JA, Aravind L, Kumar S.

PLoS One. 2009 Aug 27;4(8):e6793. doi: 10.1371/journal.pone.0006793.

2.

The transcription factor T-bet regulates parasitemia and promotes pathogenesis during Plasmodium berghei ANKA murine malaria.

Oakley MS, Sahu BR, Lotspeich-Cole L, Solanki NR, Majam V, Pham PT, Banerjee R, Kozakai Y, Derrick SC, Kumar S, Morris SL.

J Immunol. 2013 Nov 1;191(9):4699-708. doi: 10.4049/jimmunol.1300396. Epub 2013 Sep 27.

3.

Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity.

Briquet S, Lawson-Hogban N, Boisson B, Soares MP, Péronet R, Smith L, Ménard R, Huerre M, Mécheri S, Vaquero C.

Infect Immun. 2015 Jul;83(7):2771-84. doi: 10.1128/IAI.03129-14. Epub 2015 Apr 27.

4.

Host biomarkers and biological pathways that are associated with the expression of experimental cerebral malaria in mice.

Oakley MS, McCutchan TF, Anantharaman V, Ward JM, Faucette L, Erexson C, Mahajan B, Zheng H, Majam V, Aravind L, Kumar S.

Infect Immun. 2008 Oct;76(10):4518-29. doi: 10.1128/IAI.00525-08. Epub 2008 Jul 21.

5.

Prevention of experimental cerebral malaria by Flt3 ligand during infection with Plasmodium berghei ANKA.

Tamura T, Kimura K, Yuda M, Yui K.

Infect Immun. 2011 Oct;79(10):3947-56. doi: 10.1128/IAI.01337-10. Epub 2011 Aug 1.

6.

Neuroimmunological blood brain barrier opening in experimental cerebral malaria.

Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SH, Frevert U.

PLoS Pathog. 2012;8(10):e1002982. doi: 10.1371/journal.ppat.1002982. Epub 2012 Oct 25.

7.

Critical role of IL-33 receptor ST2 in experimental cerebral malaria development.

Palomo J, Reverchon F, Piotet J, Besnard AG, Couturier-Maillard A, Maillet I, Tefit M, Erard F, Mazier D, Ryffel B, Quesniaux VF.

Eur J Immunol. 2015 May;45(5):1354-65. doi: 10.1002/eji.201445206. Epub 2015 Mar 20.

8.

Type I interferons contribute to experimental cerebral malaria development in response to sporozoite or blood-stage Plasmodium berghei ANKA.

Palomo J, Fauconnier M, Coquard L, Gilles M, Meme S, Szeremeta F, Fick L, Franetich JF, Jacobs M, Togbe D, Beloeil JC, Mazier D, Ryffel B, Quesniaux VF.

Eur J Immunol. 2013 Oct;43(10):2683-95. doi: 10.1002/eji.201343327. Epub 2013 Jul 19.

9.

Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria.

Shaw TN, Stewart-Hutchinson PJ, Strangward P, Dandamudi DB, Coles JA, Villegas-Mendez A, Gallego-Delgado J, van Rooijen N, Zindy E, Rodriguez A, Brewer JM, Couper KN, Dustin ML.

PLoS Pathog. 2015 Nov 12;11(11):e1005210. doi: 10.1371/journal.ppat.1005210. eCollection 2015.

10.

Parasite densities modulate susceptibility of mice to cerebral malaria during co-infection with Schistosoma japonicum and Plasmodium berghei.

Wang ML, Feng YH, Pang W, Qi ZM, Zhang Y, Guo YJ, Luo EJ, Cao YM.

Malar J. 2014 Mar 26;13:116. doi: 10.1186/1475-2875-13-116.

11.

Suppression of CD4+ Effector Responses by Naturally Occurring CD4+ CD25+ Foxp3+ Regulatory T Cells Contributes to Experimental Cerebral Malaria.

Blanc AL, Keswani T, Gorgette O, Bandeira A, Malissen B, Cazenave PA, Pied S.

Infect Immun. 2015 Nov 9;84(1):329-38. doi: 10.1128/IAI.00717-15.

12.

Protection from experimental cerebral malaria with a single dose of radiation-attenuated, blood-stage Plasmodium berghei parasites.

Gerald NJ, Majam V, Mahajan B, Kozakai Y, Kumar S.

PLoS One. 2011;6(9):e24398. doi: 10.1371/journal.pone.0024398. Epub 2011 Sep 15.

14.

Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection.

Miyakoda M, Kimura D, Yuda M, Chinzei Y, Shibata Y, Honma K, Yui K.

J Immunol. 2008 Jul 15;181(2):1420-8.

15.

Molecular correlates of experimental cerebral malaria detectable in whole blood.

Oakley MS, Anantharaman V, Venancio TM, Zheng H, Mahajan B, Majam V, McCutchan TF, Myers TG, Aravind L, Kumar S.

Infect Immun. 2011 Mar;79(3):1244-53. doi: 10.1128/IAI.00964-10. Epub 2010 Dec 13.

16.

Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria.

Haque A, Best SE, Unosson K, Amante FH, de Labastida F, Anstey NM, Karupiah G, Smyth MJ, Heath WR, Engwerda CR.

J Immunol. 2011 Jun 1;186(11):6148-56. doi: 10.4049/jimmunol.1003955. Epub 2011 Apr 27.

17.

Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis.

Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D, Combadiere B.

J Immunol. 2003 Feb 15;170(4):2221-8.

18.

Pre-existing Schistosoma japonicum infection alters the immune response to Plasmodium berghei infection in C57BL/6 mice.

Wang ML, Cao YM, Luo EJ, Zhang Y, Guo YJ.

Malar J. 2013 Sep 14;12:322. doi: 10.1186/1475-2875-12-322.

19.

Deletion of C-reactive protein ameliorates experimental cerebral malaria?

Szalai AJ, Barnum SR, Ramos TN.

Trans R Soc Trop Med Hyg. 2014 Sep;108(9):591-3. doi: 10.1093/trstmh/tru098. Epub 2014 Jul 7.

20.

Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria.

Pamplona A, Ferreira A, Balla J, Jeney V, Balla G, Epiphanio S, Chora A, Rodrigues CD, Gregoire IP, Cunha-Rodrigues M, Portugal S, Soares MP, Mota MM.

Nat Med. 2007 Jun;13(6):703-10. Epub 2007 May 13.

PMID:
17496899

Supplemental Content

Support Center