Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Structure-based discovery and description of plant and animal Helitrons.

Yang L, Bennetzen JL.

Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12832-7. doi: 10.1073/pnas.0905563106. Epub 2009 Jul 21.

2.

HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes.

Xiong W, He L, Lai J, Dooner HK, Du C.

Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10263-8. doi: 10.1073/pnas.1410068111. Epub 2014 Jun 30.

3.

Helitrons, the Eukaryotic Rolling-circle Transposable Elements.

Thomas J, Pritham EJ.

Microbiol Spectr. 2015 Aug;3(4). doi: 10.1128/microbiolspec.MDNA3-0049-2014. Review.

PMID:
26350323
4.

Helitrons on a roll: eukaryotic rolling-circle transposons.

Kapitonov VV, Jurka J.

Trends Genet. 2007 Oct;23(10):521-9. Epub 2007 Sep 11. Review.

PMID:
17850916
5.

New insights into helitron transposable elements in the mesopolyploid species Brassica rapa.

Fu D, Wei L, Xiao M, Hayward A.

Gene. 2013 Dec 15;532(2):236-45. doi: 10.1016/j.gene.2013.09.033. Epub 2013 Sep 20.

PMID:
24055723
6.

Distribution, diversity, evolution, and survival of Helitrons in the maize genome.

Yang L, Bennetzen JL.

Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19922-7. doi: 10.1073/pnas.0908008106. Epub 2009 Nov 19.

7.

Pervasive horizontal transfer of rolling-circle transposons among animals.

Thomas J, Schaack S, Pritham EJ.

Genome Biol Evol. 2010;2:656-64. doi: 10.1093/gbe/evq050. Epub 2010 Aug 6.

8.

Transposable elements, gene creation and genome rearrangement in flowering plants.

Bennetzen JL.

Curr Opin Genet Dev. 2005 Dec;15(6):621-7. Epub 2005 Oct 10. Review.

PMID:
16219458
9.

Rolling-circle transposons in eukaryotes.

Kapitonov VV, Jurka J.

Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8714-9. Epub 2001 Jul 10.

10.

Rolling-circle amplification of centromeric Helitrons in plant genomes.

Xiong W, Dooner HK, Du C.

Plant J. 2016 Dec;88(6):1038-1045. doi: 10.1111/tpj.13314. Epub 2016 Oct 25.

PMID:
27553634
11.

Highly expressed captured genes and cross-kingdom domains present in Helitrons create novel diversity in Pleurotus ostreatus and other fungi.

Castanera R, Pérez G, López L, Sancho R, Santoyo F, Alfaro M, Gabaldón T, Pisabarro AG, Oguiza JA, Ramírez L.

BMC Genomics. 2014 Dec 5;15:1071. doi: 10.1186/1471-2164-15-1071.

12.

Identification and evolution of the silkworm helitrons and their contribution to transcripts.

Han MJ, Shen YH, Xu MS, Liang HY, Zhang HH, Zhang Z.

DNA Res. 2013 Oct;20(5):471-84. doi: 10.1093/dnares/dst024. Epub 2013 Jun 14.

13.

A comparative computational analysis of nonautonomous helitron elements between maize and rice.

Sweredoski M, DeRose-Wilson L, Gaut BS.

BMC Genomics. 2008 Oct 8;9:467. doi: 10.1186/1471-2164-9-467.

14.

The limited distribution of Helitrons to vesper bats supports horizontal transfer.

Thomas J, Sorourian M, Ray D, Baker RJ, Pritham EJ.

Gene. 2011 Mar 15;474(1-2):52-8. doi: 10.1016/j.gene.2010.12.007. Epub 2010 Dec 28.

PMID:
21193022
15.

Computational prediction and molecular confirmation of Helitron transposons in the maize genome.

Du C, Caronna J, He L, Dooner HK.

BMC Genomics. 2008 Jan 28;9:51. doi: 10.1186/1471-2164-9-51.

16.

The polychromatic Helitron landscape of the maize genome.

Du C, Fefelova N, Caronna J, He L, Dooner HK.

Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19916-21. doi: 10.1073/pnas.0904742106. Epub 2009 Nov 19.

17.

Spontaneous mutations caused by a Helitron transposon, Hel-It1, in morning glory, Ipomoea tricolor.

Choi JD, Hoshino A, Park KI, Park IS, Iida S.

Plant J. 2007 Mar;49(5):924-34. Epub 2007 Jan 25.

18.

Mining hidden polymorphic sequence motifs from divergent plant helitrons.

Xiong W, Du C.

Mob Genet Elements. 2014 Oct 30;4(5):1-5. eCollection 2014 Oct.

19.

Mobilizing the genome of Lepidoptera through novel sequence gains and end creation by non-autonomous Lep1 Helitrons.

Coates BS, Hellmich RL, Grant DM, Abel CA.

DNA Res. 2012;19(1):11-21. doi: 10.1093/dnares/dsr038. Epub 2011 Nov 15.

20.

Rolling-circle transposons catalyze genomic innovation in a mammalian lineage.

Thomas J, Phillips CD, Baker RJ, Pritham EJ.

Genome Biol Evol. 2014 Sep 14;6(10):2595-610. doi: 10.1093/gbe/evu204.

Supplemental Content

Support Center