Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Purkinje cell loss in experimental autoimmune encephalomyelitis.

MacKenzie-Graham A, Tiwari-Woodruff SK, Sharma G, Aguilar C, Vo KT, Strickland LV, Morales L, Fubara B, Martin M, Jacobs RE, Johnson GA, Toga AW, Voskuhl RR.

Neuroimage. 2009 Dec;48(4):637-51. doi: 10.1016/j.neuroimage.2009.06.073.

2.

Cortical atrophy in experimental autoimmune encephalomyelitis: in vivo imaging.

MacKenzie-Graham A, Rinek GA, Avedisian A, Gold SM, Frew AJ, Aguilar C, Lin DR, Umeda E, Voskuhl RR, Alger JR.

Neuroimage. 2012 Mar;60(1):95-104. doi: 10.1016/j.neuroimage.2011.11.099.

3.

Estrogen treatment prevents gray matter atrophy in experimental autoimmune encephalomyelitis.

MacKenzie-Graham AJ, Rinek GA, Avedisian A, Morales LB, Umeda E, Boulat B, Jacobs RE, Toga AW, Voskuhl RR.

J Neurosci Res. 2012 Jul;90(7):1310-23. doi: 10.1002/jnr.23019.

4.

Cerebellar cortical atrophy in experimental autoimmune encephalomyelitis.

MacKenzie-Graham A, Tinsley MR, Shah KP, Aguilar C, Strickland LV, Boline J, Martin M, Morales L, Shattuck DW, Jacobs RE, Voskuhl RR, Toga AW.

Neuroimage. 2006 Sep;32(3):1016-23.

PMID:
16806982
5.

Switch in the expression of mGlu1 and mGlu5 metabotropic glutamate receptors in the cerebellum of mice developing experimental autoimmune encephalomyelitis and in autoptic cerebellar samples from patients with multiple sclerosis.

Fazio F, Notartomaso S, Aronica E, Storto M, Battaglia G, Vieira E, Gatti S, Bruno V, Biagioni F, Gradini R, Nicoletti F, Di Marco R.

Neuropharmacology. 2008 Sep;55(4):491-9. doi: 10.1016/j.neuropharm.2008.06.066.

PMID:
18619983
6.

Abnormal Purkinje cell activity in vivo in experimental allergic encephalomyelitis.

Saab CY, Craner MJ, Kataoka Y, Waxman SG.

Exp Brain Res. 2004 Sep;158(1):1-8.

PMID:
15118796
7.

IL-1β dependent cerebellar synaptopathy in a mouse mode of multiple sclerosis.

Mandolesi G, Gentile A, Musella A, Centonze D.

Cerebellum. 2015 Feb;14(1):19-22. doi: 10.1007/s12311-014-0613-0. Review.

PMID:
25326653
8.

A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis.

Shields SD, Cheng X, Gasser A, Saab CY, Tyrrell L, Eastman EM, Iwata M, Zwinger PJ, Black JA, Dib-Hajj SD, Waxman SG.

Ann Neurol. 2012 Feb;71(2):186-94. doi: 10.1002/ana.22665.

PMID:
22367990
9.

Bringing CLARITY to gray matter atrophy.

Spence RD, Kurth F, Itoh N, Mongerson CR, Wailes SH, Peng MS, MacKenzie-Graham AJ.

Neuroimage. 2014 Nov 1;101:625-32. doi: 10.1016/j.neuroimage.2014.07.017.

10.

GABAergic signaling and connectivity on Purkinje cells are impaired in experimental autoimmune encephalomyelitis.

Mandolesi G, Grasselli G, Musella A, Gentile A, Musumeci G, Sepman H, Haji N, Fresegna D, Bernardi G, Centonze D.

Neurobiol Dis. 2012 May;46(2):414-24. doi: 10.1016/j.nbd.2012.02.005.

PMID:
22349452
11.

Experimental autoimmune encephalomyelitis (EAE): lesion visualization on a 3 Tesla clinical whole-body system after intraperitoneal contrast injection.

Heckl S, Nägele T, Herrmann M, Gärtner S, Klose U, Schick F, Weissert R, Küker W.

Rofo. 2004 Nov;176(11):1549-54.

PMID:
15497071
12.

Susceptibility-weighted imaging in the experimental autoimmune encephalomyelitis model of multiple sclerosis indicates elevated deoxyhemoglobin, iron deposition and demyelination.

Nathoo N, Agrawal S, Wu Y, Haylock-Jacobs S, Yong VW, Foniok T, Barnes S, Obenaus A, Dunn JF.

Mult Scler. 2013 May;19(6):721-31. doi: 10.1177/1352458512460602.

PMID:
23027879
13.

Annexin II/p11 is up-regulated in Purkinje cells in EAE and MS.

Craner MJ, Lo AC, Black JA, Baker D, Newcombe J, Cuzner ML, Waxman SG.

Neuroreport. 2003 Mar 24;14(4):555-8.

PMID:
12657884
14.

Neutralizing IL-17 protects the optic nerve from autoimmune pathology and prevents retinal nerve fiber layer atrophy during experimental autoimmune encephalomyelitis.

Knier B, Rothhammer V, Heink S, Puk O, Graw J, Hemmer B, Korn T.

J Autoimmun. 2015 Jan;56:34-44. doi: 10.1016/j.jaut.2014.09.003.

PMID:
25282335
16.

Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis.

Mandolesi G, Musella A, Gentile A, Grasselli G, Haji N, Sepman H, Fresegna D, Bullitta S, De Vito F, Musumeci G, Di Sanza C, Strata P, Centonze D.

J Neurosci. 2013 Jul 17;33(29):12105-21. doi: 10.1523/JNEUROSCI.5369-12.2013.

17.

Region-specific regulation of inflammation and pathogenesis in experimental autoimmune encephalomyelitis.

Archambault AS, Sim J, McCandless EE, Klein RS, Russell JH.

J Neuroimmunol. 2006 Dec;181(1-2):122-32.

PMID:
17030428
18.

Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis.

Prinz J, Karacivi A, Stormanns ER, Recks MS, Kuerten S.

PLoS One. 2015 Dec 11;10(12):e0144847. doi: 10.1371/journal.pone.0144847. Erratum in: PLoS One. 2016;11(5):e0155197.

19.

Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model.

Horstmann L, Schmid H, Heinen AP, Kurschus FC, Dick HB, Joachim SC.

J Neuroinflammation. 2013 Oct 4;10:120. doi: 10.1186/1742-2094-10-120.

20.

Digitized image analysis reveals diffuse abnormalities in normal-appearing white matter during acute experimental autoimmune encephalomyelitis.

Kawczak JA, Mathisen PM, Drazba JA, Fuss B, Macklin WB, Tuohy VK.

J Neurosci Res. 1998 Nov 1;54(3):364-72.

PMID:
9819141
Items per page

Supplemental Content

Support Center