Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions.

Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC; International Schizophrenia Consortium., Purcell SM, Sklar P, Scolnick EM, Xavier RJ, Altshuler D, Daly MJ.

PLoS Genet. 2009 Jun;5(6):e1000534. doi: 10.1371/journal.pgen.1000534.

2.

SNP-based pathway enrichment analysis for genome-wide association studies.

Weng L, Macciardi F, Subramanian A, Guffanti G, Potkin SG, Yu Z, Xie X.

BMC Bioinformatics. 2011 Apr 15;12:99. doi: 10.1186/1471-2105-12-99.

3.

GenoWAP: GWAS signal prioritization through integrated analysis of genomic functional annotation.

Lu Q, Yao X, Hu Y, Zhao H.

Bioinformatics. 2016 Feb 15;32(4):542-8. doi: 10.1093/bioinformatics/btv610.

PMID:
26504140
4.

VIZ-GRAIL: visualizing functional connections across disease loci.

Raychaudhuri S.

Bioinformatics. 2011 Jun 1;27(11):1589-90. doi: 10.1093/bioinformatics/btr185.

6.

RS-SNP: a random-set method for genome-wide association studies.

D'Addabbo A, Palmieri O, Latiano A, Annese V, Mukherjee S, Ancona N.

BMC Genomics. 2011 Mar 30;12:166. doi: 10.1186/1471-2164-12-166.

7.

Prioritizing candidate disease genes by network-based boosting of genome-wide association data.

Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM.

Genome Res. 2011 Jul;21(7):1109-21. doi: 10.1101/gr.118992.110.

9.

Association between SNPs and gene expression in multiple regions of the human brain.

Kim S, Cho H, Lee D, Webster MJ.

Transl Psychiatry. 2012 May 8;2:e113. doi: 10.1038/tp.2012.42.

10.

Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk.

Moskvina V, Craddock N, Holmans P, Nikolov I, Pahwa JS, Green E; Wellcome Trust Case Control Consortium., Owen MJ, O'Donovan MC.

Mol Psychiatry. 2009 Mar;14(3):252-60. doi: 10.1038/mp.2008.133.

11.

Guided exploration of genomic risk for gray matter abnormalities in schizophrenia using parallel independent component analysis with reference.

Chen J, Calhoun VD, Pearlson GD, Perrone-Bizzozero N, Sui J, Turner JA, Bustillo JR, Ehrlich S, Sponheim SR, Cañive JM, Ho BC, Liu J.

Neuroimage. 2013 Dec;83:384-96. doi: 10.1016/j.neuroimage.2013.05.073.

12.

Genetic associations of brain structural networks in schizophrenia: a preliminary study.

Jagannathan K, Calhoun VD, Gelernter J, Stevens MC, Liu J, Bolognani F, Windemuth A, Ruaño G, Assaf M, Pearlson GD.

Biol Psychiatry. 2010 Oct 1;68(7):657-66. doi: 10.1016/j.biopsych.2010.06.002.

13.

Pathway analysis comparison using Crohn's disease genome wide association studies.

Ballard D, Abraham C, Cho J, Zhao H.

BMC Med Genomics. 2010 Jun 28;3:25. doi: 10.1186/1755-8794-3-25.

14.

Improved integrative framework combining association data with gene expression features to prioritize Crohn's disease genes.

Ning K, Gettler K, Zhang W, Ng SM, Bowen BM, Hyams J, Stephens MC, Kugathasan S, Denson LA, Schadt EE, Hoffman GE, Cho JH.

Hum Mol Genet. 2015 Jul 15;24(14):4147-57. doi: 10.1093/hmg/ddv142.

15.

MicroRNAs enrichment in GWAS of complex human phenotypes.

Goulart LF, Bettella F, Sønderby IE, Schork AJ, Thompson WK, Mattingsdal M, Steen VM, Zuber V, Wang Y, Dale AM; PRACTICAL/ELLIPSE consortium., Andreassen OA, Djurovic S.

BMC Genomics. 2015 Apr 16;16:304. doi: 10.1186/s12864-015-1513-5.

16.

Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets.

Xiong Q, Ancona N, Hauser ER, Mukherjee S, Furey TS.

Genome Res. 2012 Feb;22(2):386-97. doi: 10.1101/gr.124370.111. Erratum in: Genome Res. 2013 May;23(5):905.

17.

Genetic studies of Crohn's disease: past, present and future.

Liu JZ, Anderson CA.

Best Pract Res Clin Gastroenterol. 2014 Jun;28(3):373-86. doi: 10.1016/j.bpg.2014.04.009. Review.

18.

Prioritisation and network analysis of Crohn's disease susceptibility genes.

Muraro D, Lauffenburger DA, Simmons A.

PLoS One. 2014 Sep 30;9(9):e108624. doi: 10.1371/journal.pone.0108624.

19.

Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn's disease.

Fransen K, Visschedijk MC, van Sommeren S, Fu JY, Franke L, Festen EA, Stokkers PC, van Bodegraven AA, Crusius JB, Hommes DW, Zanen P, de Jong DJ, Wijmenga C, van Diemen CC, Weersma RK.

Hum Mol Genet. 2010 Sep 1;19(17):3482-8. doi: 10.1093/hmg/ddq264.

20.

Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations.

Yang SK, Hong M, Zhao W, Jung Y, Baek J, Tayebi N, Kim KM, Ye BD, Kim KJ, Park SH, Lee I, Lee EJ, Kim WH, Cheon JH, Kim YH, Jang BI, Kim HS, Choi JH, Koo JS, Lee JH, Jung SA, Lee YJ, Jang JY, Shin HD, Kang D, Youn HS, Liu J, Song K.

Gut. 2014 Jan;63(1):80-7. doi: 10.1136/gutjnl-2013-305193.

PMID:
23850713
Items per page

Supplemental Content

Support Center