Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 272

1.
2.

Interaction of elongation factor 1-alpha with leucine-rich repeat kinase 2 impairs kinase activity and microtubule bundling in vitro.

Gillardon F.

Neuroscience. 2009 Oct 6;163(2):533-9. doi: 10.1016/j.neuroscience.2009.06.051. Epub 2009 Jun 25.

PMID:
19559761
3.

A direct interaction between leucine-rich repeat kinase 2 and specific β-tubulin isoforms regulates tubulin acetylation.

Law BM, Spain VA, Leinster VH, Chia R, Beilina A, Cho HJ, Taymans JM, Urban MK, Sancho RM, Blanca Ramírez M, Biskup S, Baekelandt V, Cai H, Cookson MR, Berwick DC, Harvey K.

J Biol Chem. 2014 Jan 10;289(2):895-908. doi: 10.1074/jbc.M113.507913. Epub 2013 Nov 25.

4.

Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson's disease.

Tsika E, Nguyen AP, Dusonchet J, Colin P, Schneider BL, Moore DJ.

Neurobiol Dis. 2015 May;77:49-61. doi: 10.1016/j.nbd.2015.02.019. Epub 2015 Feb 28.

PMID:
25731749
5.

Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells.

Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT.

J Neurochem. 2008 May;105(3):1048-56. doi: 10.1111/j.1471-4159.2008.05217.x. Epub 2008 Jan 7.

6.

A rat model of progressive nigral neurodegeneration induced by the Parkinson's disease-associated G2019S mutation in LRRK2.

Dusonchet J, Kochubey O, Stafa K, Young SM Jr, Zufferey R, Moore DJ, Schneider BL, Aebischer P.

J Neurosci. 2011 Jan 19;31(3):907-12. doi: 10.1523/JNEUROSCI.5092-10.2011.

7.

Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein.

Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J, Chen ZZ, Gallant PE, Tao-Cheng JH, Rudow G, Troncoso JC, Liu Z, Li Z, Cai H.

Neuron. 2009 Dec 24;64(6):807-27. doi: 10.1016/j.neuron.2009.11.006.

8.

LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth.

Kawakami F, Yabata T, Ohta E, Maekawa T, Shimada N, Suzuki M, Maruyama H, Ichikawa T, Obata F.

PLoS One. 2012;7(1):e30834. doi: 10.1371/journal.pone.0030834. Epub 2012 Jan 27.

9.

Leucine-rich repeat kinase 2 functionally interacts with microtubules and kinase-dependently modulates cell migration.

Caesar M, Zach S, Carlson CB, Brockmann K, Gasser T, Gillardon F.

Neurobiol Dis. 2013 Jun;54:280-8. doi: 10.1016/j.nbd.2012.12.019. Epub 2013 Jan 11.

PMID:
23318930
10.

14-3-3 Proteins regulate mutant LRRK2 kinase activity and neurite shortening.

Lavalley NJ, Slone SR, Ding H, West AB, Yacoubian TA.

Hum Mol Genet. 2016 Jan 1;25(1):109-22. doi: 10.1093/hmg/ddv453. Epub 2015 Nov 5.

11.

Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation.

Schwab AJ, Ebert AD.

Stem Cell Reports. 2015 Dec 8;5(6):1039-52. doi: 10.1016/j.stemcr.2015.11.004.

12.

Lovastatin protects neurite degeneration in LRRK2-G2019S parkinsonism through activating the Akt/Nrf pathway and inhibiting GSK3β activity.

Lin CH, Lin HI, Chen ML, Lai TT, Cao LP, Farrer MJ, Wu RM, Chien CT.

Hum Mol Genet. 2016 May 15;25(10):1965-1978. Epub 2016 Feb 29.

PMID:
26931464
13.

Chemical genetic approach identifies microtubule affinity-regulating kinase 1 as a leucine-rich repeat kinase 2 substrate.

Krumova P, Reyniers L, Meyer M, Lobbestael E, Stauffer D, Gerrits B, Muller L, Hoving S, Kaupmann K, Voshol J, Fabbro D, Bauer A, Rovelli G, Taymans JM, Bouwmeester T, Baekelandt V.

FASEB J. 2015 Jul;29(7):2980-92. doi: 10.1096/fj.14-262329. Epub 2015 Apr 8.

14.

LRRK2 Facilitates tau Phosphorylation through Strong Interaction with tau and cdk5.

Shanley MR, Hawley D, Leung S, Zaidi NF, Dave R, Schlosser KA, Bandopadhyay R, Gerber SA, Liu M.

Biochemistry. 2015 Aug 25;54(33):5198-208. doi: 10.1021/acs.biochem.5b00326. Epub 2015 Aug 13.

PMID:
26268594
15.

Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression.

Henry AG, Aghamohammadzadeh S, Samaroo H, Chen Y, Mou K, Needle E, Hirst WD.

Hum Mol Genet. 2015 Nov 1;24(21):6013-28. doi: 10.1093/hmg/ddv314. Epub 2015 Aug 6.

PMID:
26251043
16.

Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity.

West AB, Moore DJ, Choi C, Andrabi SA, Li X, Dikeman D, Biskup S, Zhang Z, Lim KL, Dawson VL, Dawson TM.

Hum Mol Genet. 2007 Jan 15;16(2):223-32. Epub 2007 Jan 2.

PMID:
17200152
17.

Phosphorylation of 4E-BP1 in the mammalian brain is not altered by LRRK2 expression or pathogenic mutations.

Trancikova A, Mamais A, Webber PJ, Stafa K, Tsika E, Glauser L, West AB, Bandopadhyay R, Moore DJ.

PLoS One. 2012;7(10):e47784. doi: 10.1371/journal.pone.0047784. Epub 2012 Oct 17.

18.

Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression.

Liu G, Sgobio C, Gu X, Sun L, Lin X, Yu J, Parisiadou L, Xie C, Sastry N, Ding J, Lohr KM, Miller GW, Mateo Y, Lovinger DM, Cai H.

Hum Mol Genet. 2015 Sep 15;24(18):5299-312. doi: 10.1093/hmg/ddv249. Epub 2015 Jun 29.

19.

Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily.

Stafa K, Tsika E, Moser R, Musso A, Glauser L, Jones A, Biskup S, Xiong Y, Bandopadhyay R, Dawson VL, Dawson TM, Moore DJ.

Hum Mol Genet. 2014 Apr 15;23(8):2055-77. doi: 10.1093/hmg/ddt600. Epub 2013 Nov 26.

20.

GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1.

Stafa K, Trancikova A, Webber PJ, Glauser L, West AB, Moore DJ.

PLoS Genet. 2012;8(2):e1002526. doi: 10.1371/journal.pgen.1002526. Epub 2012 Feb 9.

Supplemental Content

Support Center