Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Kinematics of intracellular chlamydiae provide evidence for contact-dependent development.

Wilson DP, Whittum-Hudson JA, Timms P, Bavoil PM.

J Bacteriol. 2009 Sep;191(18):5734-42. doi: 10.1128/JB.00293-09. Epub 2009 Jun 19.

2.

Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle.

Shaw EI, Dooley CA, Fischer ER, Scidmore MA, Fields KA, Hackstadt T.

Mol Microbiol. 2000 Aug;37(4):913-25.

3.

Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle.

Skilton RJ, Cutcliffen LT, Barlow D, Wang Y, Salim O, Lambden PR, Clarke IN.

PLoS One. 2009 Nov 6;4(11):e7723. doi: 10.1371/journal.pone.0007723.

4.

The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.

Lucas AL, Ouellette SP, Kabeiseman EJ, Cichos KH, Rucks EA.

Front Cell Infect Microbiol. 2015 Sep 25;5:68. doi: 10.3389/fcimb.2015.00068. eCollection 2015.

5.
6.
7.

Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development.

Fields KA, Mead DJ, Dooley CA, Hackstadt T.

Mol Microbiol. 2003 May;48(3):671-83.

8.

Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms.

Saka HA, Thompson JW, Chen YS, Kumar Y, Dubois LG, Moseley MA, Valdivia RH.

Mol Microbiol. 2011 Dec;82(5):1185-203. doi: 10.1111/j.1365-2958.2011.07877.x. Epub 2011 Nov 7.

9.

Spatial constraints within the chlamydial host cell inclusion predict interrupted development and persistence.

Hoare A, Timms P, Bavoil PM, Wilson DP.

BMC Microbiol. 2008 Jan 9;8:5. doi: 10.1186/1471-2180-8-5.

10.

Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium.

Omsland A, Sager J, Nair V, Sturdevant DE, Hackstadt T.

Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19781-5. doi: 10.1073/pnas.1212831109. Epub 2012 Nov 5. Erratum in: Proc Natl Acad Sci U S A. 2013 Jan 20;110(5):1970.

11.
12.

Chlamydia trachomatis persistence in vitro: an overview.

Wyrick PB.

J Infect Dis. 2010 Jun 15;201 Suppl 2:S88-95. doi: 10.1086/652394.

13.

[Study on the inhibitory effects of minocycline on genital Chlamydia trachomatis in McCoy cell culture].

Hosomura Y.

Kansenshogaku Zasshi. 1990 Mar;64(3):310-20. Japanese.

PMID:
2358712
14.
15.

The molecular biology and diagnostics of Chlamydia trachomatis.

Birkelund S.

Dan Med Bull. 1992 Aug;39(4):304-20.

PMID:
1526183
16.

Replication-dependent size reduction precedes differentiation in Chlamydia trachomatis.

Lee JK, Enciso GA, Boassa D, Chander CN, Lou TH, Pairawan SS, Guo MC, Wan FYM, Ellisman MH, Sütterlin C, Tan M.

Nat Commun. 2018 Jan 3;9(1):45. doi: 10.1038/s41467-017-02432-0.

17.
18.

Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector.

Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Clarke IN.

PLoS Pathog. 2011 Sep;7(9):e1002258. doi: 10.1371/journal.ppat.1002258. Epub 2011 Sep 22.

19.

The Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.

Grieshaber S, Grieshaber N, Yang H, Baxter B, Hackstadt T, Omsland A.

J Bacteriol. 2018 May 7. pii: JB.00065-18. doi: 10.1128/JB.00065-18. [Epub ahead of print]

PMID:
29735758
20.

Quantitative Proteomics of the Infectious and Replicative Forms of Chlamydia trachomatis.

Skipp PJ, Hughes C, McKenna T, Edwards R, Langridge J, Thomson NR, Clarke IN.

PLoS One. 2016 Feb 12;11(2):e0149011. doi: 10.1371/journal.pone.0149011. eCollection 2016.

Supplemental Content

Support Center