Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Plug-and-play inference for disease dynamics: measles in large and small populations as a case study.

He D, Ionides EL, King AA.

J R Soc Interface. 2010 Feb 6;7(43):271-83. doi: 10.1098/rsif.2009.0151. Epub 2009 Jun 17.

2.

Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in London.

Cauchemez S, Ferguson NM.

J R Soc Interface. 2008 Aug 6;5(25):885-97. doi: 10.1098/rsif.2007.1292.

3.

Parameterizing state-space models for infectious disease dynamics by generalized profiling: measles in Ontario.

Hooker G, Ellner SP, Roditi Lde V, Earn DJ.

J R Soc Interface. 2011 Jul 6;8(60):961-74. doi: 10.1098/rsif.2010.0412. Epub 2010 Nov 17.

4.

Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.

Grenfell BT, Kleczkowski A, Gilligan CA, Bolker BM.

Stat Methods Med Res. 1995 Jun;4(2):160-83. Review.

PMID:
7582203
5.

Statistical inference and model selection for the 1861 Hagelloch measles epidemic.

Neal PJ, Roberts GO.

Biostatistics. 2004 Apr;5(2):249-61.

PMID:
15054029
6.

Inference for nonlinear epidemiological models using genealogies and time series.

Rasmussen DA, Ratmann O, Koelle K.

PLoS Comput Biol. 2011 Aug;7(8):e1002136. doi: 10.1371/journal.pcbi.1002136. Epub 2011 Aug 25.

7.

Inference for ecological dynamical systems: a case study of two endemic diseases.

Vasco DA.

Comput Math Methods Med. 2012;2012:390694. doi: 10.1155/2012/390694. Epub 2012 Mar 26.

8.

Human birth seasonality: latitudinal gradient and interplay with childhood disease dynamics.

Martinez-Bakker M, Bakker KM, King AA, Rohani P.

Proc Biol Sci. 2014 Apr 2;281(1783):20132438. doi: 10.1098/rspb.2013.2438. Print 2014 May 22.

9.

Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics.

Xia Y, Bjørnstad ON, Grenfell BT.

Am Nat. 2004 Aug;164(2):267-81. Epub 2004 Jul 8.

PMID:
15278849
10.

Space, persistence and dynamics of measles epidemics.

Bolker B, Grenfell B.

Philos Trans R Soc Lond B Biol Sci. 1995 May 30;348(1325):309-20. Review.

PMID:
8577828
11.

Interpreting time-series analyses for continuous-time biological models--measles as a case study.

Glass K, Xia Y, Grenfell BT.

J Theor Biol. 2003 Jul 7;223(1):19-25.

PMID:
12782113
12.

Deterministic and stochastic models for the seasonal variability of measles transmission.

Mollison D, Din SU.

Math Biosci. 1993 Sep-Oct;117(1-2):155-77.

PMID:
8400572
13.
14.

Stochastic dynamics and a power law for measles variability.

Keeling M, Grenfell B.

Philos Trans R Soc Lond B Biol Sci. 1999 Apr 29;354(1384):769-76.

15.

Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent.

Wang Y, Christley S, Mjolsness E, Xie X.

BMC Syst Biol. 2010 Jul 21;4:99. doi: 10.1186/1752-0509-4-99.

16.

An agent-based approach for modeling dynamics of contagious disease spread.

Perez L, Dragicevic S.

Int J Health Geogr. 2009 Aug 5;8:50. doi: 10.1186/1476-072X-8-50.

17.

Monte Carlo simulation of the transmission of measles: beyond the mass action principle.

Zekri N, Clerc JP.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 2A):046108. Epub 2002 Mar 25.

PMID:
12005927
18.

Estimation of measles vaccine efficacy and critical vaccination coverage in a highly vaccinated population.

van Boven M, Kretzschmar M, Wallinga J, O'Neill PD, Wichmann O, Hahné S.

J R Soc Interface. 2010 Nov 6;7(52):1537-44. doi: 10.1098/rsif.2010.0086. Epub 2010 Apr 14.

19.

A network-based analysis of the 1861 Hagelloch measles data.

Groendyke C, Welch D, Hunter DR.

Biometrics. 2012 Sep;68(3):755-65. doi: 10.1111/j.1541-0420.2012.01748.x. Epub 2012 Feb 24.

20.

Probabilistic measures of persistence and extinction in measles (meta)populations.

Gunning CE, Wearing HJ.

Ecol Lett. 2013 Aug;16(8):985-94. doi: 10.1111/ele.12124. Epub 2013 Jun 20.

Supplemental Content

Support Center