Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

65 nm feature sizes using visible wavelength 3-D multiphoton lithography.

Haske W, Chen VW, Hales JM, Dong W, Barlow S, Marder SR, Perry JW.

Opt Express. 2007 Mar 19;15(6):3426-36.

PMID:
19532584
2.
3.

Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths.

Park SG, Yang SM.

Nanoscale. 2013 May 21;5(10):4110-3. doi: 10.1039/c3nr00644a.

PMID:
23538506
4.

Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties.

Serbin J, Ovsianikov A, Chichkov B.

Opt Express. 2004 Oct 18;12(21):5221-8.

PMID:
19484080
5.
6.

Platinum acetylide two-photon chromophores.

Rogers JE, Slagle JE, Krein DM, Burke AR, Hall BC, Fratini A, McLean DG, Fleitz PA, Cooper TM, Drobizhev M, Makarov NS, Rebane A, Kim KY, Farley R, Schanze KS.

Inorg Chem. 2007 Aug 6;46(16):6483-94. Epub 2007 Jul 10.

PMID:
17622140
7.

One-, two-, and three-photon absorption induced fluorescence of a novel chromophore in chloroform solution.

Wang Y, Tai OY, Wang CH, Jen AK.

J Chem Phys. 2004 Oct 22;121(16):7901-7.

PMID:
15485252
8.

Polychromophoric metal complexes for generating the bioregulatory agent nitric oxide by single- and two-photon excitation.

Ford PC.

Acc Chem Res. 2008 Feb;41(2):190-200. doi: 10.1021/ar700128y. Epub 2008 Jan 9.

PMID:
18181579
9.

Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization.

Li L, Gattass RR, Gershgoren E, Hwang H, Fourkas JT.

Science. 2009 May 15;324(5929):910-3. doi: 10.1126/science.1168996. Epub 2009 Apr 9.

10.

Multiphoton microscopy in life sciences.

König K.

J Microsc. 2000 Nov;200(Pt 2):83-104. Review.

11.
12.

Three-dimensional woodpile photonic crystal templates for the infrared spectral range.

Mizeikis V, Seet KK, Juodkazis S, Misawa H.

Opt Lett. 2004 Sep 1;29(17):2061-3.

PMID:
15455780
13.
14.

Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal.

Subramania G, Lee YJ, Brener I, Luk TS, Clem PG.

Opt Express. 2007 Oct 1;15(20):13049-57.

PMID:
19550574
15.

Predictions of novel two-photon absorption bands in fluorescent proteins.

Nifosì R, Luo Y.

J Phys Chem B. 2007 Dec 20;111(50):14043-50. Epub 2007 Nov 21.

PMID:
18027922
16.

Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.

Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM.

Nat Mater. 2004 Jul;3(7):444-7. Epub 2004 Jun 13.

PMID:
15195083
17.

Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size.

Gan Z, Cao Y, Evans RA, Gu M.

Nat Commun. 2013;4:2061. doi: 10.1038/ncomms3061.

PMID:
23784312
18.

Optimizing simultaneous two-photon absorption and transient triplet-triplet absorption in platinum acetylide chromophores.

Kim KY, Shelton AH, Drobizhev M, Makarov N, Rebane A, Schanze KS.

J Phys Chem A. 2010 Jul 8;114(26):7003-13. doi: 10.1021/jp1005567.

PMID:
20536199
19.

Two-photon absorption in three-dimensional chromophores based on [2.2]-paracyclophane.

Bartholomew GP, Rumi M, Pond SJ, Perry JW, Tretiak S, Bazan GC.

J Am Chem Soc. 2004 Sep 22;126(37):11529-42.

PMID:
15366899
20.

3D direct laser writing using a 405  nm diode laser.

Mueller P, Thiel M, Wegener M.

Opt Lett. 2014 Dec 15;39(24):6847-50. doi: 10.1364/OL.39.006847.

PMID:
25503012

Supplemental Content

Support Center