Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber.

Parmigiani F, Asimakis S, Sugimoto N, Koizumi F, Petropoulos P, Richardson DJ.

Opt Express. 2006 Jun 12;14(12):5038-44.

PMID:
19516664
2.

All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber.

Lee JH, Kikuchi K, Nagashima T, Hasegawa T, Ohara S, Sugimoto N.

Opt Express. 2005 Sep 5;13(18):6864-9.

PMID:
19498704
3.

Self-phase-modulation based all-optical regeneration of PDM signals using a single section of highly-nonlinear fiber.

Yi AL, Yan LS, Luo B, Pan W, Ye J, Leuthold J.

Opt Express. 2010 Mar 29;18(7):7150-6. doi: 10.1364/OE.18.007150.

PMID:
20389736
4.

Self-phase-modulation-based 2R regenerator including pulse compression and offset filtering for 42.6 Gbit/s RZ-33% transmission systems.

Nguyen TN, Chartier T, Bramerie L, Gay M, Le QT, Lobo S, Joindot M, Simon JC, Fatome J, Finot C.

Opt Express. 2009 Sep 28;17(20):17747-57. doi: 10.1364/OE.17.017747.

PMID:
19907561
5.

Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration.

Provost L, Parmigiani F, Finot C, Mukasa K, Petropoulos P, Richardson DJ.

Opt Express. 2008 Feb 4;16(3):2264-75.

PMID:
18542306
6.
7.

All-optical multichannel 2R regeneration in a fiber-based device.

Vasilyev M, Lakoba TI.

Opt Lett. 2005 Jun 15;30(12):1458-60.

PMID:
16007773
8.

Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering.

Nguyen T, Gay M, Bramerie L, Chartier T, Simon JC, Joindot M.

Opt Express. 2006 Mar 6;14(5):1737-47.

PMID:
19503502
9.

Design scaling rules for 2R-optical self-phase modulation-based regenerators.

Provost LA, Finot C, Petropoulos P, Mukasa K, Richardson DJ.

Opt Express. 2007 Apr 16;15(8):5100-13.

PMID:
19532760
11.

All-fiber 80-Gbit/s wavelength converter using 1-m-long Bismuth Oxide-based nonlinear optical fiber with a nonlinearity gamma of 1100 W-1km-1.

Lee JH, Kikuchi K, Nagashima T, Hasegawa T, Ohara S, Sugimoto N.

Opt Express. 2005 Apr 18;13(8):3144-9.

PMID:
19495213
12.
13.

Four-wave mixing based widely tunable wavelength conversion using 1-m dispersion-shifted bismuth-oxide photonic crystal fiber.

Chow KK, Kikuchi K, Nagashima T, Hasegawa T, Ohara S, Sugimoto N.

Opt Express. 2007 Nov 12;15(23):15418-23.

PMID:
19550827
14.
16.

Raman effects in a highly nonlinear holey fiber: amplification and modulation.

Yusoff Z, Lee JH, Belardi W, Monro TM, Teh PC, Richardson DJ.

Opt Lett. 2002 Mar 15;27(6):424-6.

PMID:
18007822
17.

Fiber-based all-optical regeneration of DPSK signals degraded by transmission in a fiber.

Matsumoto M, Morioka Y.

Opt Express. 2009 Apr 13;17(8):6913-9.

PMID:
19365517
18.

All-optical DQPSK signal regeneration using 2R amplitude regenerators.

Matsumoto M.

Opt Express. 2010 Jan 4;18(1):10-24. doi: 10.1364/OE.18.000010.

PMID:
20173816
19.

Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber.

Le SD, Nguyen DM, Thual M, Bramerie L, Costa e Silva M, Lenglé K, Gay M, Chartier T, Brilland L, Méchin D, Toupin P, Troles J.

Opt Express. 2011 Dec 12;19(26):B653-60. doi: 10.1364/OE.19.00B653.

PMID:
22274084
20.

Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber.

Ta'eed VG, Fu L, Pelusi M, Rochette M, Littler IC, Moss DJ, Eggleton BJ.

Opt Express. 2006 Oct 30;14(22):10371-6.

PMID:
19529435

Supplemental Content

Support Center