Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 613

1.

Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors.

Bettendorff L, Wins P.

FEBS J. 2009 Jun;276(11):2917-25. doi: 10.1111/j.1742-4658.2009.07019.x. Epub 2009 Apr 23. Review.

2.

Hydrolysis and synthesis of thiamin triphosphate in bacteria.

Nishimune T, Hayashi R.

J Nutr Sci Vitaminol (Tokyo). 1987 Apr;33(2):113-27.

PMID:
3039089
3.

Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence.

Frédérich M, Delvaux D, Gigliobianco T, Gangolf M, Dive G, Mazzucchelli G, Elias B, De Pauw E, Angenot L, Wins P, Bettendorff L.

FEBS J. 2009 Jun;276(12):3256-68. doi: 10.1111/j.1742-4658.2009.07040.x. Epub 2009 Apr 29.

5.

Thiamine triphosphate: a ubiquitous molecule in search of a physiological role.

Bettendorff L, Lakaye B, Kohn G, Wins P.

Metab Brain Dis. 2014 Dec;29(4):1069-82. doi: 10.1007/s11011-014-9509-4. Epub 2014 Mar 4. Review.

PMID:
24590690
6.

Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals.

Makarchikov AF, Lakaye B, Gulyai IE, Czerniecki J, Coumans B, Wins P, Grisar T, Bettendorff L.

Cell Mol Life Sci. 2003 Jul;60(7):1477-88.

PMID:
12943234
7.

Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress.

Gigliobianco T, Lakaye B, Wins P, El Moualij B, Zorzi W, Bettendorff L.

BMC Microbiol. 2010 May 21;10:148. doi: 10.1186/1471-2180-10-148.

8.

Adenylate kinase-independent thiamine triphosphate accumulation under severe energy stress in Escherichia coli.

Gigliobianco T, Lakaye B, Makarchikov AF, Wins P, Bettendorff L.

BMC Microbiol. 2008 Jan 23;8:16. doi: 10.1186/1471-2180-8-16.

9.

Thiamine triphosphate, a new signal required for optimal growth of Escherichia coli during amino acid starvation.

Lakaye B, Wirtzfeld B, Wins P, Grisar T, Bettendorff L.

J Biol Chem. 2004 Apr 23;279(17):17142-7. Epub 2004 Feb 9.

10.

The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts.

Kowalska E, Kozik A.

Cell Mol Biol Lett. 2008;13(2):271-82. Epub 2008 Apr 10. Review.

PMID:
18161008
11.

Studies on ATP: thiamine diphosphate phosphotransferase activity in rat brain.

Schrijver J, Dias T, Hommes FA.

Neurochem Res. 1978 Dec;3(6):699-709.

PMID:
216945
12.

Thiamin deficiency in the lamb: changes in thiamin phosphate esters in the brain.

Thornber EJ, Dunlop RH, Gawthorne JM.

J Neurochem. 1980 Sep;35(3):713-7.

PMID:
7452281
13.
14.

Thiamin diphosphate in biological chemistry: analogues of thiamin diphosphate in studies of enzymes and riboswitches.

Agyei-Owusu K, Leeper FJ.

FEBS J. 2009 Jun;276(11):2905-16. doi: 10.1111/j.1742-4658.2009.07018.x. Epub 2009 Apr 23. Review.

15.
16.

On the mechanism of action of thiamin enzymes in the presence of bivalent metal ions.

Malandrinos G, Dodi K, Louloudi M, Hadjiliadis N.

J Inorg Biochem. 2000 Apr;79(1-4):21-4.

PMID:
10830842
17.

Thiamine, thiamine phosphates and thiamine metabolizing enzymes in synaptosomes of rat brain.

Laforenza U, Patrini C, Mazzarello P, Poloni M, Rindi G.

Basic Appl Histochem. 1990;34(4):249-57.

PMID:
1963298
18.

Adenosine triphosphate and thiamine cross paths.

Jordan F.

Nat Chem Biol. 2007 Apr;3(4):202-3. No abstract available.

PMID:
17372602
19.
20.

Brain thiamine, its phosphate esters, and its metabolizing enzymes in Alzheimer's disease.

Mastrogiacoma F, Bettendorff L, Grisar T, Kish SJ.

Ann Neurol. 1996 May;39(5):585-91.

PMID:
8619543

Supplemental Content

Support Center