Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca(2+) homeostasis.

Shen J, Yu WM, Brotto M, Scherman JA, Guo C, Stoddard C, Nosek TM, Valdivia HH, Qu CK.

Nat Cell Biol. 2009 Jun;11(6):769-76. doi: 10.1038/ncb1884. Epub 2009 May 24.

2.

Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) potentiates cardiac contractility via activation of the ryanodine receptor.

Touchberry CD, Bales IK, Stone JK, Rohrberg TJ, Parelkar NK, Nguyen T, Fuentes O, Liu X, Qu CK, Andresen JJ, Valdivia HH, Brotto M, Wacker MJ.

J Biol Chem. 2010 Dec 17;285(51):40312-21. doi: 10.1074/jbc.M110.179689. Epub 2010 Oct 14.

3.

Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle.

Oláh T, Bodnár D, Tóth A, Vincze J, Fodor J, Reischl B, Kovács A, Ruzsnavszky O, Dienes B, Szentesi P, Friedrich O, Csernoch L.

J Physiol. 2016 Dec 15;594(24):7381-7398. doi: 10.1113/JP272449. Epub 2016 Oct 27.

4.

Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis.

Romero-Suarez S, Shen J, Brotto L, Hall T, Mo C, Valdivia HH, Andresen J, Wacker M, Nosek TM, Qu CK, Brotto M.

Aging (Albany NY). 2010 Aug;2(8):504-13.

5.

Differential expression of genes involved in the calcium homeostasis in masticatory muscles of MDX mice.

Kunert-Keil CH, Gredes T, Lucke S, Botzenhart U, Dominiak M, Gedrange T.

J Physiol Pharmacol. 2014 Apr;65(2):317-24.

6.

Ryanodine modification of RyR1 retrogradely affects L-type Ca(2+) channel gating in skeletal muscle.

Bannister RA, Beam KG.

J Muscle Res Cell Motil. 2009;30(5-6):217-23. doi: 10.1007/s10974-009-9190-0. Epub 2009 Oct 3.

7.

Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.

Beard NA, Wei L, Dulhunty AF.

Clin Exp Pharmacol Physiol. 2009 Mar;36(3):340-5. doi: 10.1111/j.1440-1681.2008.05094.x. Review.

PMID:
19278523
8.

Phosphoinositides in Ca(2+) signaling and excitation-contraction coupling in skeletal muscle: an old player and newcomers.

Csernoch L, Jacquemond V.

J Muscle Res Cell Motil. 2015 Dec;36(6):491-9. doi: 10.1007/s10974-015-9422-4. Epub 2015 Sep 16. Review.

PMID:
26377756
9.

Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling.

Goonasekera SA, Beard NA, Groom L, Kimura T, Lyfenko AD, Rosenfeld A, Marty I, Dulhunty AF, Dirksen RT.

J Gen Physiol. 2007 Oct;130(4):365-78. Epub 2007 Sep 10.

10.

Excitation-contraction coupling from the 1950s into the new millennium.

Dulhunty AF.

Clin Exp Pharmacol Physiol. 2006 Sep;33(9):763-72. Review.

PMID:
16922804
11.

Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins.

Tuvia S, Buhusi M, Davis L, Reedy M, Bennett V.

J Cell Biol. 1999 Nov 29;147(5):995-1008.

12.

Ca2+ release in muscle fibers expressing R4892W and G4896V type 1 ryanodine receptor disease mutants.

Lefebvre R, Legrand C, Groom L, Dirksen RT, Jacquemond V.

PLoS One. 2013;8(1):e54042. doi: 10.1371/journal.pone.0054042. Epub 2013 Jan 7.

13.

The creatine kinase system is essential for optimal refill of the sarcoplasmic reticulum Ca2+ store in skeletal muscle.

de Groof AJ, Fransen JA, Errington RJ, Willems PH, Wieringa B, Koopman WJ.

J Biol Chem. 2002 Feb 15;277(7):5275-84. Epub 2001 Dec 4.

14.

Phosphoinositide substrates of myotubularin affect voltage-activated Ca²⁺ release in skeletal muscle.

Rodríguez EG, Lefebvre R, Bodnár D, Legrand C, Szentesi P, Vincze J, Poulard K, Bertrand-Michel J, Csernoch L, Buj-Bello A, Jacquemond V.

Pflugers Arch. 2014 May;466(5):973-85.

PMID:
24022704
15.

Calcitonin gene-related peptide restores disrupted excitation-contraction coupling in myotubes expressing central core disease mutations in RyR1.

Vega AV, Ramos-Mondragón R, Calderón-Rivera A, Zarain-Herzberg A, Avila G.

J Physiol. 2011 Oct 1;589(Pt 19):4649-69. doi: 10.1113/jphysiol.2011.210765. Epub 2011 Aug 8.

16.

Genetic modulation of the SERCA activity does not affect the Ca(2+) leak from the cardiac sarcoplasmic reticulum.

Morimoto S, Hongo K, Kusakari Y, Komukai K, Kawai M, O-Uchi J, Nakayama H, Asahi M, Otsu K, Yoshimura M, Kurihara S.

Cell Calcium. 2014 Jan;55(1):17-23. doi: 10.1016/j.ceca.2013.10.005. Epub 2013 Nov 13.

PMID:
24290743
17.

Deficit of CD38/cyclic ADP-ribose is differentially compensated in hearts by gender.

Takahashi J, Kagaya Y, Kato I, Ohta J, Isoyama S, Miura M, Sugai Y, Hirose M, Wakayama Y, Ninomiya M, Watanabe J, Takasawa S, Okamoto H, Shirato K.

Biochem Biophys Res Commun. 2003 Dec 12;312(2):434-40.

PMID:
14637156
18.

Altered Ca2+ homeostasis in the skeletal muscle of DJ-1 null mice.

Shtifman A, Zhong N, Lopez JR, Shen J, Xu J.

Neurobiol Aging. 2011 Jan;32(1):125-32. doi: 10.1016/j.neurobiolaging.2009.07.010. Epub 2009 Aug 15.

19.

Dissociation of FKBP12.6 from ryanodine receptor type 2 is regulated by cyclic ADP-ribose but not beta-adrenergic stimulation in mouse cardiomyocytes.

Zhang X, Tallini YN, Chen Z, Gan L, Wei B, Doran R, Miao L, Xin HB, Kotlikoff MI, Ji G.

Cardiovasc Res. 2009 Nov 1;84(2):253-62. doi: 10.1093/cvr/cvp212. Epub 2009 Jul 3.

20.

The potassium channel opener NS1619 modulates calcium homeostasis in muscle cells by inhibiting SERCA.

Wrzosek A.

Cell Calcium. 2014 Jul;56(1):14-24. doi: 10.1016/j.ceca.2014.03.005. Epub 2014 Apr 18.

PMID:
24813114

Supplemental Content

Support Center