Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Dopaminergic response to drug words in cocaine addiction.

Goldstein RZ, Tomasi D, Alia-Klein N, Honorio Carrillo J, Maloney T, Woicik PA, Wang R, Telang F, Volkow ND.

J Neurosci. 2009 May 6;29(18):6001-6. doi: 10.1523/JNEUROSCI.4247-08.2009.

2.

Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction.

Goldstein RZ, Tomasi D, Rajaram S, Cottone LA, Zhang L, Maloney T, Telang F, Alia-Klein N, Volkow ND.

Neuroscience. 2007 Feb 23;144(4):1153-9. Epub 2006 Dec 29.

3.

Gene x abstinence effects on drug cue reactivity in addiction: multimodal evidence.

Moeller SJ, Parvaz MA, Shumay E, Beebe-Wang N, Konova AB, Alia-Klein N, Volkow ND, Goldstein RZ.

J Neurosci. 2013 Jun 12;33(24):10027-36. doi: 10.1523/JNEUROSCI.0695-13.2013.

4.

Neurophysiological effects of modafinil on cue-exposure in cocaine dependence: a randomized placebo-controlled cross-over study using pharmacological fMRI.

Goudriaan AE, Veltman DJ, van den Brink W, Dom G, Schmaal L.

Addict Behav. 2013 Feb;38(2):1509-17. doi: 10.1016/j.addbeh.2012.04.006. Epub 2012 Apr 24.

PMID:
22591950
5.

Enhanced midbrain response at 6-month follow-up in cocaine addiction, association with reduced drug-related choice.

Moeller SJ, Tomasi D, Woicik PA, Maloney T, Alia-Klein N, Honorio J, Telang F, Wang GJ, Wang R, Sinha R, Carise D, Astone-Twerell J, Bolger J, Volkow ND, Goldstein RZ.

Addict Biol. 2012 Nov;17(6):1013-25. doi: 10.1111/j.1369-1600.2012.00440.x. Epub 2012 Mar 28.

6.

Widespread disruption in brain activation patterns to a working memory task during cocaine abstinence.

Tomasi D, Goldstein RZ, Telang F, Maloney T, Alia-Klein N, Caparelli EC, Volkow ND.

Brain Res. 2007 Sep 26;1171:83-92. Epub 2007 Aug 10.

7.

Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: association to striatal D2/D3 receptors.

Tomasi D, Wang GJ, Wang R, Caparelli EC, Logan J, Volkow ND.

Hum Brain Mapp. 2015 Jan;36(1):120-36. doi: 10.1002/hbm.22617. Epub 2014 Aug 21.

8.

Impact of DCS-facilitated cue exposure therapy on brain activation to cocaine cues in cocaine dependence.

Prisciandaro JJ, Myrick H, Henderson S, McRae-Clark AL, Santa Ana EJ, Saladin ME, Brady KT.

Drug Alcohol Depend. 2013 Sep 1;132(1-2):195-201. doi: 10.1016/j.drugalcdep.2013.02.009. Epub 2013 Mar 14.

9.

Nipping cue reactivity in the bud: baclofen prevents limbic activation elicited by subliminal drug cues.

Young KA, Franklin TR, Roberts DC, Jagannathan K, Suh JJ, Wetherill RR, Wang Z, Kampman KM, O'Brien CP, Childress AR.

J Neurosci. 2014 Apr 2;34(14):5038-43. doi: 10.1523/JNEUROSCI.4977-13.2014.

10.

Disrupted functional connectivity with dopaminergic midbrain in cocaine abusers.

Tomasi D, Volkow ND, Wang R, Carrillo JH, Maloney T, Alia-Klein N, Woicik PA, Telang F, Goldstein RZ.

PLoS One. 2010 May 25;5(5):e10815. doi: 10.1371/journal.pone.0010815.

11.

Modeling Causal Relationship Between Brain Regions Within the Drug-Cue Processing Network in Chronic Cocaine Smokers.

Ray S, Haney M, Hanson C, Biswal B, Hanson SJ.

Neuropsychopharmacology. 2015 Dec;40(13):2960-8. doi: 10.1038/npp.2015.150. Epub 2015 Jun 3.

12.

Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction.

Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C.

J Neurosci. 2006 Jun 14;26(24):6583-8. Erratum in: J Neurosci. 2006 Jul 5;26(27):table of contents.

13.

Brain activation to cocaine cues and motivation/treatment status.

Prisciandaro JJ, McRae-Clark AL, Myrick H, Henderson S, Brady KT.

Addict Biol. 2014 Mar;19(2):240-9. doi: 10.1111/j.1369-1600.2012.00446.x. Epub 2012 Mar 28.

14.

Working memory fMRI activation in cocaine-dependent subjects: association with treatment response.

Moeller FG, Steinberg JL, Schmitz JM, Ma L, Liu S, Kjome KL, Rathnayaka N, Kramer LA, Narayana PA.

Psychiatry Res. 2010 Mar 30;181(3):174-82. doi: 10.1016/j.pscychresns.2009.11.003. Epub 2010 Feb 12.

15.

Increased intra-individual reaction time variability in cocaine-dependent subjects: role of cocaine-related cues.

Liu S, Lane SD, Schmitz JM, Green CE, Cunningham KA, Moeller FG.

Addict Behav. 2012 Feb;37(2):193-7. doi: 10.1016/j.addbeh.2011.10.003. Epub 2011 Oct 12.

16.

Cerebellar vermis involvement in cocaine-related behaviors.

Anderson CM, Maas LC, Frederick Bd, Bendor JT, Spencer TJ, Livni E, Lukas SE, Fischman AJ, Madras BK, Renshaw PF, Kaufman MJ.

Neuropsychopharmacology. 2006 Jun;31(6):1318-26.

17.

Gene x disease interaction on orbitofrontal gray matter in cocaine addiction.

Alia-Klein N, Parvaz MA, Woicik PA, Konova AB, Maloney T, Shumay E, Wang R, Telang F, Biegon A, Wang GJ, Fowler JS, Tomasi D, Volkow ND, Goldstein RZ.

Arch Gen Psychiatry. 2011 Mar;68(3):283-94. doi: 10.1001/archgenpsychiatry.2011.10.

18.

Enhanced cue reactivity and fronto-striatal functional connectivity in cocaine use disorders.

Wilcox CE, Teshiba TM, Merideth F, Ling J, Mayer AR.

Drug Alcohol Depend. 2011 May 1;115(1-2):137-44. doi: 10.1016/j.drugalcdep.2011.01.009. Epub 2011 Apr 3.

19.

[Effects of listening to previously hallucinated words by schizophrenia patients in remission: a functional magnetic resonance imaging study of six cases].

Ait Bentaleb L, Stip E, Mendrek A, Mensour B, Beauregard M.

Encephale. 2006 Jan-Feb;32(1 Pt 1):27-40. French.

PMID:
16633288
20.

Enhanced orbitofrontal cortex function and lack of attentional bias to cocaine cues in recreational stimulant users.

Smith DG, Simon Jones P, Bullmore ET, Robbins TW, Ersche KD.

Biol Psychiatry. 2014 Jan 15;75(2):124-31. doi: 10.1016/j.biopsych.2013.05.019. Epub 2013 Jun 27.

PMID:
23809860

Supplemental Content

Support Center