Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Mechanisms of quantum dot nanoparticle cellular uptake.

Zhang LW, Monteiro-Riviere NA.

Toxicol Sci. 2009 Jul;110(1):138-55. doi: 10.1093/toxsci/kfp087.

2.

Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes.

Zhang LW, Yu WW, Colvin VL, Monteiro-Riviere NA.

Toxicol Appl Pharmacol. 2008 Apr 15;228(2):200-11. doi: 10.1016/j.taap.2007.12.022.

PMID:
18261754
3.

Cyclic tensile strain increases interactions between human epidermal keratinocytes and quantum dot nanoparticles.

Rouse JG, Haslauer CM, Loboa EG, Monteiro-Riviere NA.

Toxicol In Vitro. 2008 Mar;22(2):491-7.

PMID:
18054460
4.

Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells.

Choi AO, Cho SJ, Desbarats J, Lovrić J, Maysinger D.

J Nanobiotechnology. 2007 Feb 12;5:1.

5.

Dynamics and mechanisms of quantum dot nanoparticle cellular uptake.

Xiao Y, Forry SP, Gao X, Holbrook RD, Telford WG, Tona A.

J Nanobiotechnology. 2010 Jun 15;8:13. doi: 10.1186/1477-3155-8-13.

6.

Endocytosis mechanism of P2Y2 nucleotide receptor tagged with green fluorescent protein: clathrin and actin cytoskeleton dependence.

Tulapurkar ME, Schäfer R, Hanck T, Flores RV, Weisman GA, González FA, Reiser G.

Cell Mol Life Sci. 2005 Jun;62(12):1388-99.

PMID:
15924261
7.

Penetration of intact skin by quantum dots with diverse physicochemical properties.

Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA.

Toxicol Sci. 2006 May;91(1):159-65.

8.

Surface coating directed cellular delivery of TAT-functionalized quantum dots.

Wei Y, Jana NR, Tan SJ, Ying JY.

Bioconjug Chem. 2009 Sep;20(9):1752-8. doi: 10.1021/bc8003777.

PMID:
19681598
9.

Multiplexed energy transfer mechanisms in a dual-function quantum dot for zinc and manganese.

Ruedas-Rama MJ, Hall EA.

Analyst. 2009 Jan;134(1):159-69. doi: 10.1039/b814879a.

PMID:
19082188
10.

Hepatoma cell uptake of cationic multifluorescent quantum dot liposomes.

Bothun GD, Rabideau AE, Stoner MA.

J Phys Chem B. 2009 Jun 4;113(22):7725-8. doi: 10.1021/jp9017458.

PMID:
19473036
11.

Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer.

Al-Jamal WT, Al-Jamal KT, Bomans PH, Frederik PM, Kostarelos K.

Small. 2008 Sep;4(9):1406-15. doi: 10.1002/smll.200701043.

PMID:
18711753
12.

Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.

Taylor U, Klein S, Petersen S, Kues W, Barcikowski S, Rath D.

Cytometry A. 2010 May;77(5):439-46. doi: 10.1002/cyto.a.20846.

13.
14.

Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis.

Qaddoumi MG, Gukasyan HJ, Davda J, Labhasetwar V, Kim KJ, Lee VH.

Mol Vis. 2003 Oct 15;9:559-68.

15.

Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin.

Zhang LW, Monteiro-Riviere NA.

Skin Pharmacol Physiol. 2008;21(3):166-80. doi: 10.1159/000131080.

PMID:
18523414
16.

Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction.

Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM.

Nat Biotechnol. 2004 Feb;22(2):198-203.

PMID:
14704683
17.
18.
20.

The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line.

Clift MJ, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V.

Toxicol Appl Pharmacol. 2008 Nov 1;232(3):418-27. doi: 10.1016/j.taap.2008.06.009.

PMID:
18708083
Items per page

Supplemental Content

Support Center