Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85


Resistance of Haemophilus influenzae to reactive nitrogen donors and gamma interferon-stimulated macrophages requires the formate-dependent nitrite reductase regulator-activated ytfE gene.

Harrington JC, Wong SM, Rosadini CV, Garifulin O, Boyartchuk V, Akerley BJ.

Infect Immun. 2009 May;77(5):1945-58. doi: 10.1128/IAI.01365-08. Epub 2009 Mar 16.


The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase.

Filenko N, Spiro S, Browning DF, Squire D, Overton TW, Cole J, Constantinidou C.

J Bacteriol. 2007 Jun;189(12):4410-7. Epub 2007 Apr 20.


Novel role of the nitrite transporter NirC in Salmonella pathogenesis: SPI2-dependent suppression of inducible nitric oxide synthase in activated macrophages.

Das P, Lahiri A, Lahiri A, Chakravortty D.

Microbiology. 2009 Aug;155(Pt 8):2476-89. doi: 10.1099/mic.0.029611-0. Epub 2009 Jun 11.


Haemophilus ducreyi SapA contributes to cathelicidin resistance and virulence in humans.

Mount KL, Townsend CA, Rinker SD, Gu X, Fortney KR, Zwickl BW, Janowicz DM, Spinola SM, Katz BP, Bauer ME.

Infect Immun. 2010 Mar;78(3):1176-84. doi: 10.1128/IAI.01014-09. Epub 2010 Jan 19.


The periplasmic disulfide oxidoreductase DsbA contributes to Haemophilus influenzae pathogenesis.

Rosadini CV, Wong SM, Akerley BJ.

Infect Immun. 2008 Apr;76(4):1498-508. doi: 10.1128/IAI.01378-07. Epub 2008 Jan 22.


Involvement of Salmonella enterica serovar Typhi RpoS in resistance to NO-mediated host defense against serovar Typhi infection.

Alam MS, Zaki MH, Yoshitake J, Akuta T, Ezaki T, Akaike T.

Microb Pathog. 2006 Mar;40(3):116-25. Epub 2006 Jan 31.


Virulence attenuation of Streptococcus pneumoniae clpP mutant by sensitivity to oxidative stress in macrophages via an NO-mediated pathway.

Park CY, Kim EH, Choi SY, Tran TD, Kim IH, Kim SN, Pyo S, Rhee DK.

J Microbiol. 2010 Apr;48(2):229-35. doi: 10.1007/s12275-010-9300-0. Epub 2010 May 1.


The ArcA regulon and oxidative stress resistance in Haemophilus influenzae.

Wong SM, Alugupalli KR, Ram S, Akerley BJ.

Mol Microbiol. 2007 Jun;64(5):1375-90.


Genome-scale approaches to identify genes essential for Haemophilus influenzae pathogenesis.

Wong SM, Akerley BJ.

Front Cell Infect Microbiol. 2012 Mar 5;2:23. doi: 10.3389/fcimb.2012.00023. eCollection 2012. Review.


Inactivation of deoxyadenosine methyltransferase (dam) attenuates Haemophilus influenzae virulence.

Watson ME Jr, Jarisch J, Smith AL.

Mol Microbiol. 2004 Jul;53(2):651-64.


Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness.

Whitby PW, Morton DJ, Vanwagoner TM, Seale TW, Cole BK, Mussa HJ, McGhee PA, Bauer CY, Springer JM, Stull TL.

PLoS One. 2012;7(11):e50588. doi: 10.1371/journal.pone.0050588. Epub 2012 Nov 30.


Characterization of lactate utilization and its implication on the physiology of Haemophilus influenzae.

Lichtenegger S, Bina I, Roier S, Bauernfeind S, Keidel K, Schild S, Anthony M, Reidl J.

Int J Med Microbiol. 2014 May;304(3-4):490-8. doi: 10.1016/j.ijmm.2014.02.010. Epub 2014 Mar 2.


Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis.

Brotcke A, Weiss DS, Kim CC, Chain P, Malfatti S, Garcia E, Monack DM.

Infect Immun. 2006 Dec;74(12):6642-55. Epub 2006 Sep 25.


Two-component systems in Haemophilus influenzae: a regulatory role for ArcA in serum resistance.

De Souza-Hart JA, Blackstock W, Di Modugno V, Holland IB, Kok M.

Infect Immun. 2003 Jan;71(1):163-72.

Items per page

Supplemental Content

Write to the Help Desk