Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 196

1.

Generating an unfoldase from thioredoxin-like domains.

Forster ML, Mahn JJ, Tsai B.

J Biol Chem. 2009 May 8;284(19):13045-56. doi: 10.1074/jbc.M808352200. Epub 2009 Mar 16.

2.

Human protein-disulfide isomerase is a redox-regulated chaperone activated by oxidation of domain a'.

Wang C, Yu J, Huo L, Wang L, Feng W, Wang CC.

J Biol Chem. 2012 Jan 6;287(2):1139-49. doi: 10.1074/jbc.M111.303149. Epub 2011 Nov 16.

3.

Reconstitution of human Ero1-Lalpha/protein-disulfide isomerase oxidative folding pathway in vitro. Position-dependent differences in role between the a and a' domains of protein-disulfide isomerase.

Wang L, Li SJ, Sidhu A, Zhu L, Liang Y, Freedman RB, Wang CC.

J Biol Chem. 2009 Jan 2;284(1):199-206. doi: 10.1074/jbc.M806645200. Epub 2008 Nov 11.

4.

Redox-dependent domain rearrangement of protein disulfide isomerase coupled with exposure of its substrate-binding hydrophobic surface.

Serve O, Kamiya Y, Maeno A, Nakano M, Murakami C, Sasakawa H, Yamaguchi Y, Harada T, Kurimoto E, Yagi-Utsumi M, Iguchi T, Inaba K, Kikuchi J, Asami O, Kajino T, Oka T, Nakasako M, Kato K.

J Mol Biol. 2010 Feb 19;396(2):361-74. doi: 10.1016/j.jmb.2009.11.049. Epub 2009 Nov 26.

PMID:
19944705
5.

Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation.

Kulp MS, Frickel EM, Ellgaard L, Weissman JS.

J Biol Chem. 2006 Jan 13;281(2):876-84. Epub 2005 Nov 18.

7.

Zinc-dependent dimerization of the folding catalyst, protein disulfide isomerase.

Solovyov A, Gilbert HF.

Protein Sci. 2004 Jul;13(7):1902-7. Epub 2004 May 28.

8.

Plasticity of human protein disulfide isomerase: evidence for mobility around the X-linker region and its functional significance.

Wang C, Chen S, Wang X, Wang L, Wallis AK, Freedman RB, Wang CC.

J Biol Chem. 2010 Aug 27;285(35):26788-97. doi: 10.1074/jbc.M110.107839. Epub 2010 Jun 1.

9.

Molecular bases of cyclic and specific disulfide interchange between human ERO1alpha protein and protein-disulfide isomerase (PDI).

Masui S, Vavassori S, Fagioli C, Sitia R, Inaba K.

J Biol Chem. 2011 May 6;286(18):16261-71. doi: 10.1074/jbc.M111.231357. Epub 2011 Mar 11.

10.

Redox-dependent domain rearrangement of protein disulfide isomerase from a thermophilic fungus.

Nakasako M, Maeno A, Kurimoto E, Harada T, Yamaguchi Y, Oka T, Takayama Y, Iwata A, Kato K.

Biochemistry. 2010 Aug 17;49(32):6953-62. doi: 10.1021/bi1006089.

PMID:
20695532
11.

The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules.

Kemmink J, Darby NJ, Dijkstra K, Nilges M, Creighton TE.

Curr Biol. 1997 Apr 1;7(4):239-45.

12.

Mutations in domain a' of protein disulfide isomerase affect the folding pathway of bovine pancreatic ribonuclease A.

Ruoppolo M, Orrù S, Talamo F, Ljung J, Pirneskoski A, Kivirikko KI, Marino G, Koivunen P.

Protein Sci. 2003 May;12(5):939-52.

13.

Structure of the catalytic a(0)a fragment of the protein disulfide isomerase ERp72.

Kozlov G, Azeroual S, Rosenauer A, Määttänen P, Denisov AY, Thomas DY, Gehring K.

J Mol Biol. 2010 Aug 27;401(4):618-25. doi: 10.1016/j.jmb.2010.06.045. Epub 2010 Jun 26.

PMID:
20600112
14.

Combinations of protein-disulfide isomerase domains show that there is little correlation between isomerase activity and wild-type growth.

Xiao R, Solovyov A, Gilbert HF, Holmgren A, Lundström-Ljung J.

J Biol Chem. 2001 Jul 27;276(30):27975-80. Epub 2001 May 24.

15.

Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase.

Pirneskoski A, Klappa P, Lobell M, Williamson RA, Byrne L, Alanen HI, Salo KE, Kivirikko KI, Freedman RB, Ruddock LW.

J Biol Chem. 2004 Mar 12;279(11):10374-81. Epub 2003 Dec 18.

16.

Domain a' of Bombyx mori protein disulfide isomerase has chaperone activity.

Goo TW, Yun EY, Kim SW, Choi KH, Kang SW, Shin KS, Yu K, Kwon OY.

Z Naturforsch C. 2008 May-Jun;63(5-6):435-9.

PMID:
18669032
17.

Identification and characterization of structural domains of human ERp57: association with calreticulin requires several domains.

Silvennoinen L, Myllyharju J, Ruoppolo M, Orrù S, Caterino M, Kivirikko KI, Koivunen P.

J Biol Chem. 2004 Apr 2;279(14):13607-15. Epub 2004 Jan 19.

18.

The Ero1alpha-PDI redox cycle regulates retro-translocation of cholera toxin.

Moore P, Bernardi KM, Tsai B.

Mol Biol Cell. 2010 Apr 1;21(7):1305-13. doi: 10.1091/mbc.E09-09-0826. Epub 2010 Feb 3.

19.

DNA-binding activity of the ERp57 C-terminal domain is related to a redox-dependent conformational change.

Grillo C, D'Ambrosio C, Consalvi V, Chiaraluce R, Scaloni A, Maceroni M, Eufemi M, Altieri F.

J Biol Chem. 2007 Apr 6;282(14):10299-310. Epub 2007 Feb 5.

20.

Substrate-induced unfolding of protein disulfide isomerase displaces the cholera toxin A1 subunit from its holotoxin.

Taylor M, Burress H, Banerjee T, Ray S, Curtis D, Tatulian SA, Teter K.

PLoS Pathog. 2014 Feb 6;10(2):e1003925. doi: 10.1371/journal.ppat.1003925. eCollection 2014 Feb.

Items per page

Supplemental Content

Write to the Help Desk