Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 120

1.

A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment.

Atkins JF, Björk GR.

Microbiol Mol Biol Rev. 2009 Mar;73(1):178-210. doi: 10.1128/MMBR.00010-08. Review.

2.

Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.

Herr AJ, Nelson CC, Wills NM, Gesteland RF, Atkins JF.

J Mol Biol. 2001 Jun 22;309(5):1029-48.

PMID:
11399077
3.

Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting.

Brierley I, Meredith MR, Bloys AJ, Hagervall TG.

J Mol Biol. 1997 Jul 18;270(3):360-73.

PMID:
9237903
4.

Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit.

Dunham CM, Selmer M, Phelps SS, Kelley AC, Suzuki T, Joseph S, Ramakrishnan V.

RNA. 2007 Jun;13(6):817-23. Epub 2007 Apr 6.

5.

tRNA hopping: effects of mutant tRNAs.

O'Connor M.

Biochim Biophys Acta. 2003 Oct 20;1630(1):41-6.

PMID:
14580678
6.

The phenotype of many independently isolated +1 frameshift suppressor mutants supports a pivotal role of the P-site in reading frame maintenance.

Jäger G, Nilsson K, Björk GR.

PLoS One. 2013 Apr 4;8(4):e60246. doi: 10.1371/journal.pone.0060246. Print 2013.

7.

Anticodon loop mutations perturb reading frame maintenance by the E site tRNA.

Sanders CL, Lohr KJ, Gambill HL, Curran RB, Curran JF.

RNA. 2008 Sep;14(9):1874-81. doi: 10.1261/rna.1170008. Epub 2008 Jul 30.

8.

Translational frameshifting: implications for the mechanism of translational frame maintenance.

Farabaugh PJ.

Prog Nucleic Acid Res Mol Biol. 2000;64:131-70. Review.

PMID:
10697409
9.

Structural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops.

Maehigashi T, Dunkle JA, Miles SJ, Dunham CM.

Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12740-5. doi: 10.1073/pnas.1409436111. Epub 2014 Aug 15.

10.

Special peptidyl-tRNA molecules can promote translational frameshifting without slippage.

Vimaladithan A, Farabaugh PJ.

Mol Cell Biol. 1994 Dec;14(12):8107-16.

11.
12.

Structural insights into translational recoding by frameshift suppressor tRNASufJ.

Fagan CE, Maehigashi T, Dunkle JA, Miles SJ, Dunham CM.

RNA. 2014 Dec;20(12):1944-54. doi: 10.1261/rna.046953.114. Epub 2014 Oct 28.

13.

A new model for phenotypic suppression of frameshift mutations by mutant tRNAs.

Qian Q, Li JN, Zhao H, Hagervall TG, Farabaugh PJ, Björk GR.

Mol Cell. 1998 Mar;1(4):471-82.

14.

Missense and nonsense suppressors can correct frameshift mutations.

Tucker SD, Murgola EJ, Pagel FT.

Biochimie. 1989 Jun;71(6):729-39.

PMID:
2502189
15.

Maintenance of the correct open reading frame by the ribosome.

Hansen TM, Baranov PV, Ivanov IP, Gesteland RF, Atkins JF.

EMBO Rep. 2003 May;4(5):499-504.

16.

tRNA anticodon replacement experiments show that ribosomal frameshifting can be caused by doublet decoding.

Bruce AG, Atkins JF, Gesteland RF.

Proc Natl Acad Sci U S A. 1986 Jul;83(14):5062-6.

17.

Recognition and positioning of mRNA in the ribosome by tRNAs with expanded anticodons.

Walker SE, Fredrick K.

J Mol Biol. 2006 Jul 14;360(3):599-609. Epub 2006 May 17.

18.

P-site tRNA is a crucial initiator of ribosomal frameshifting.

Baranov PV, Gesteland RF, Atkins JF.

RNA. 2004 Feb;10(2):221-30. Review.

19.

Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli.

Sipley J, Goldman E.

Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2315-9.

Supplemental Content

Support Center