Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 151

1.

Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer.

Hong FL, Musha M, Takamoto M, Inaba H, Yanagimachi S, Takamizawa A, Watabe K, Ikegami T, Imae M, Fujii Y, Amemiya M, Nakagawa K, Ueda K, Katori H.

Opt Lett. 2009 Mar 1;34(5):692-4.

PMID:
19252595
2.

An optical lattice clock.

Takamoto M, Hong FL, Higashi R, Katori H.

Nature. 2005 May 19;435(7040):321-4.

PMID:
15902252
3.

Frequency measurement of a Sr lattice clock using an SI-second-referenced optical frequency comb linked by a global positioning system (GPS).

Hong FL, Takamoto M, Higashi R, Fukuyama Y, Jiang J, Katori H.

Opt Express. 2005 Jul 11;13(14):5253-62.

PMID:
19498517
4.

An optical clock based on a single trapped 199Hg+ ion.

Diddams SA, Udem T, Bergquist JC, Curtis EA, Drullinger RE, Hollberg L, Itano WM, Lee WD, Oates CW, Vogel KR, Wineland DJ.

Science. 2001 Aug 3;293(5531):825-8. Epub 2001 Jul 12.

5.

Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks.

Akamatsu D, Yasuda M, Inaba H, Hosaka K, Tanabe T, Onae A, Hong FL.

Opt Express. 2014 Apr 7;22(7):7898-905. doi: 10.1364/OE.22.007898. Erratum in: Opt Express. 2014 Dec 29;22(26):32199.

PMID:
24718165
6.

Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock.

Ludlow AD, Zelevinsky T, Campbell GK, Blatt S, Boyd MM, de Miranda MH, Martin MJ, Thomsen JW, Foreman SM, Ye J, Fortier TM, Stalnaker JE, Diddams SA, Le Coq Y, Barber ZW, Poli N, Lemke ND, Beck KM, Oates CW.

Science. 2008 Mar 28;319(5871):1805-8. doi: 10.1126/science.1153341. Epub 2008 Feb 14.

7.

All-optical link for direct comparison of distant optical clocks.

Fujieda M, Kumagai M, Nagano S, Yamaguchi A, Hachisu H, Ido T.

Opt Express. 2011 Aug 15;19(17):16498-507. doi: 10.1364/OE.19.016498.

PMID:
21935014
8.

Absolute measurement of the 1S0 - 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link.

Morzyński P, Bober M, Bartoszek-Bober D, Nawrocki J, Krehlik P, Śliwczyński Ł, Lipiński M, Masłowski P, Cygan A, Dunst P, Garus M, Lisak D, Zachorowski J, Gawlik W, Radzewicz C, Ciuryło R, Zawada M.

Sci Rep. 2015 Dec 7;5:17495. doi: 10.1038/srep17495.

9.

Highly coherent spectroscopy of ultracold atoms and molecules in optical lattices.

Zelevinsky T, Blatt S, Boyd MM, Campbell GK, Ludlow AD, Ye J.

Chemphyschem. 2008 Feb 22;9(3):375-82. doi: 10.1002/cphc.200700713.

PMID:
18275047
10.

Absolute frequency measurement of the In+ clock transition with a mode-locked laser.

von Zanthier J, Becker T, Eichenseer M, Nevsky AY, Schwedes C, Peik E, Walther H, Holzwarth R, Reichert J, Udem T, Hänsch TW, Pokasov PV, Skvortsov MN, Bagayev SN.

Opt Lett. 2000 Dec 1;25(23):1729-31.

PMID:
18066328
11.

Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 x 10(-16) inaccuracy.

Swallows MD, Campbell GK, Ludlow AD, Boyd MM, Thomsen JW, Martin MJ, Blatt S, Nicholson TL, Ye J.

IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Mar;57(3):574-82. doi: 10.1109/TUFFC.2010.1449.

PMID:
20211772
12.

Coherent transfer of an optical carrier over 251 km.

Newbury NR, Williams PA, Swann WC.

Opt Lett. 2007 Nov 1;32(21):3056-8.

PMID:
17975595
13.

Demonstration of a HeNe/CH4-based optical molecular clock.

Foreman SM, Marian A, Ye J, Petrukhin EA, Gubin MA, Mücke OD, Wong FN, Ippen EP, Kärtner FX.

Opt Lett. 2005 Mar 1;30(5):570-2.

PMID:
15789739
14.

Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.

Nicholson TL, Martin MJ, Williams JR, Bloom BJ, Bishof M, Swallows MD, Campbell SL, Ye J.

Phys Rev Lett. 2012 Dec 7;109(23):230801. Epub 2012 Dec 5.

PMID:
23368177
15.

When should we change the definition of the second?

Gill P.

Philos Trans A Math Phys Eng Sci. 2011 Oct 28;369(1953):4109-30. doi: 10.1098/rsta.2011.0237.

16.

A clock network for geodesy and fundamental science.

Lisdat C, Grosche G, Quintin N, Shi C, Raupach SM, Grebing C, Nicolodi D, Stefani F, Al-Masoudi A, Dörscher S, Häfner S, Robyr JL, Chiodo N, Bilicki S, Bookjans E, Koczwara A, Koke S, Kuhl A, Wiotte F, Meynadier F, Camisard E, Abgrall M, Lours M, Legero T, Schnatz H, Sterr U, Denker H, Chardonnet C, Le Coq Y, Santarelli G, Amy-Klein A, Le Targat R, Lodewyck J, Lopez O, Pottie PE.

Nat Commun. 2016 Aug 9;7:12443. doi: 10.1038/ncomms12443.

17.

Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement.

Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M.

Opt Express. 2012 Sep 24;20(20):22034-41. doi: 10.1364/OE.20.022034.

PMID:
23037353
18.

Operating a (87)Sr optical lattice clock with high precision and at high density.

Swallows M, Martin M, Bishof M, Benko C, Lin Y, Blatt S, Rey AM, Ye J.

IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Mar;59(3):416-25. doi: 10.1109/TUFFC.2012.2210.

PMID:
22481774
19.
20.

Frequency Ratio of (199)Hg and (87)Sr Optical Lattice Clocks beyond the SI Limit.

Yamanaka K, Ohmae N, Ushijima I, Takamoto M, Katori H.

Phys Rev Lett. 2015 Jun 12;114(23):230801. Epub 2015 Jun 10.

PMID:
26196788

Supplemental Content

Support Center