Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease.

Graham RK, Pouladi MA, Joshi P, Lu G, Deng Y, Wu NP, Figueroa BE, Metzler M, André VM, Slow EJ, Raymond L, Friedlander R, Levine MS, Leavitt BR, Hayden MR.

J Neurosci. 2009 Feb 18;29(7):2193-204. doi: 10.1523/JNEUROSCI.5473-08.2009.

2.

Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.

Zhang H, Li Q, Graham RK, Slow E, Hayden MR, Bezprozvanny I.

Neurobiol Dis. 2008 Jul;31(1):80-8. doi: 10.1016/j.nbd.2008.03.010. Epub 2008 Apr 16.

3.

Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A.

Metzler M, Gan L, Mazarei G, Graham RK, Liu L, Bissada N, Lu G, Leavitt BR, Hayden MR.

J Neurosci. 2010 Oct 27;30(43):14318-29. doi: 10.1523/JNEUROSCI.1589-10.2010.

4.

Mitochondrial sensitivity and altered calcium handling underlie enhanced NMDA-induced apoptosis in YAC128 model of Huntington's disease.

Fernandes HB, Baimbridge KG, Church J, Hayden MR, Raymond LA.

J Neurosci. 2007 Dec 12;27(50):13614-23.

5.

Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease.

Li L, Fan M, Icton CD, Chen N, Leavitt BR, Hayden MR, Murphy TH, Raymond LA.

Neurobiol Aging. 2003 Dec;24(8):1113-21.

PMID:
14643383
6.

Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity.

Cowan CM, Fan MM, Fan J, Shehadeh J, Zhang LY, Graham RK, Hayden MR, Raymond LA.

J Neurosci. 2008 Nov 26;28(48):12725-35. doi: 10.1523/JNEUROSCI.4619-08.2008.

7.

P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease.

Fan J, Gladding CM, Wang L, Zhang LY, Kaufman AM, Milnerwood AJ, Raymond LA.

Neurobiol Dis. 2012 Mar;45(3):999-1009. doi: 10.1016/j.nbd.2011.12.019. Epub 2011 Dec 14.

PMID:
22198502
8.

Decreasing Levels of the cdk5 Activators, p25 and p35, Reduces Excitotoxicity in Striatal Neurons.

Park KH, Lu G, Fan J, Raymond LA, Leavitt BR.

J Huntingtons Dis. 2012;1(1):89-96. doi: 10.3233/JHD-2012-129000.

9.

Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model.

Kolodziejczyk K, Raymond LA.

Neurobiol Dis. 2016 Feb;86:62-74. doi: 10.1016/j.nbd.2015.11.020. Epub 2015 Nov 24.

PMID:
26621114
10.

NMDA receptor function in mouse models of Huntington disease.

Cepeda C, Ariano MA, Calvert CR, Flores-Hernández J, Chandler SH, Leavitt BR, Hayden MR, Levine MS.

J Neurosci Res. 2001 Nov 15;66(4):525-39.

PMID:
11746372
11.

Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model.

Gladding CM, Fan J, Zhang LY, Wang L, Xu J, Li EH, Lombroso PJ, Raymond LA.

J Neurochem. 2014 Jul;130(1):145-59. doi: 10.1111/jnc.12700. Epub 2014 Apr 2.

12.

Transgenic mice expressing a Huntington's disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity.

Hansson O, Petersén A, Leist M, Nicotera P, Castilho RF, Brundin P.

Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8727-32.

13.

Selective degeneration in YAC mouse models of Huntington disease.

Van Raamsdonk JM, Warby SC, Hayden MR.

Brain Res Bull. 2007 Apr 30;72(2-3):124-31. Epub 2006 Nov 16. Review.

PMID:
17352936
14.

Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease.

Starling AJ, André VM, Cepeda C, de Lima M, Chandler SH, Levine MS.

J Neurosci Res. 2005 Nov 1;82(3):377-86.

PMID:
16211559
15.

Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model.

Wu J, Ryskamp DA, Liang X, Egorova P, Zakharova O, Hung G, Bezprozvanny I.

J Neurosci. 2016 Jan 6;36(1):125-41. doi: 10.1523/JNEUROSCI.1038-15.2016.

16.

Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice.

Milnerwood AJ, Kaufman AM, Sepers MD, Gladding CM, Zhang L, Wang L, Fan J, Coquinco A, Qiao JY, Lee H, Wang YT, Cynader M, Raymond LA.

Neurobiol Dis. 2012 Oct;48(1):40-51. doi: 10.1016/j.nbd.2012.05.013. Epub 2012 Jun 2.

PMID:
22668780
17.
18.

Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models.

Graham RK, Slow EJ, Deng Y, Bissada N, Lu G, Pearson J, Shehadeh J, Leavitt BR, Raymond LA, Hayden MR.

Neurobiol Dis. 2006 Feb;21(2):444-55. Epub 2005 Oct 17.

PMID:
16230019
19.

Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice.

Guidetti P, Bates GP, Graham RK, Hayden MR, Leavitt BR, MacDonald ME, Slow EJ, Wheeler VC, Woodman B, Schwarcz R.

Neurobiol Dis. 2006 Jul;23(1):190-7. Epub 2006 May 12.

PMID:
16697652
20.

Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice.

Sun Z, Wang HB, Deng YP, Lei WL, Xie JP, Meade CA, Del Mar N, Goldowitz D, Reiner A.

Neurobiol Dis. 2005 Dec;20(3):907-17. Epub 2005 Jun 28.

PMID:
15990326

Supplemental Content

Support Center