Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 257

1.

Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation.

Kundu S, Roy D.

J Mol Graph Model. 2009 Jun-Jul;27(8):871-80. doi: 10.1016/j.jmgm.2009.01.004. Epub 2009 Jan 23.

PMID:
19223214
2.

Structural analysis of Ca²⁺ dependent and Ca²⁺ independent type II antifreeze proteins: a comparative molecular dynamics simulation study.

Kundu S, Roy D.

J Mol Graph Model. 2012 Sep;38:211-9. doi: 10.1016/j.jmgm.2012.05.004. Epub 2012 Jun 9.

PMID:
23079646
3.

Comparative molecular dynamics simulation studies for determining factors contributing to the thermostability of chemotaxis protein "CheY".

Paul M, Hazra M, Barman A, Hazra S.

J Biomol Struct Dyn. 2014;32(6):928-49. doi: 10.1080/07391102.2013.799438. Epub 2013 Jun 24.

PMID:
23796004
4.

Molecular dynamics study of a hyperthermophilic and a mesophilic rubredoxin.

Grottesi A, Ceruso MA, Colosimo A, Di Nola A.

Proteins. 2002 Feb 15;46(3):287-94.

PMID:
11835504
5.
6.

Temperature-induced unfolding pathway of a type III antifreeze protein: insight from molecular dynamics simulation.

Kundu S, Roy D.

J Mol Graph Model. 2008 Aug;27(1):88-94. doi: 10.1016/j.jmgm.2008.03.002. Epub 2008 Mar 16.

PMID:
18434222
7.

Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin.

Lazaridis T, Lee I, Karplus M.

Protein Sci. 1997 Dec;6(12):2589-605.

8.
9.

Conformational dynamics of cytochrome c: correlation to hydrogen exchange.

García AE, Hummer G.

Proteins. 1999 Aug 1;36(2):175-91.

PMID:
10398365
10.

Near native-state conformational landscape of psychrophilic and mesophilic enzymes: probing the folding funnel model.

Mereghetti P, Riccardi L, Brandsdal BO, Fantucci P, De Gioia L, Papaleo E.

J Phys Chem B. 2010 Jun 10;114(22):7609-19. doi: 10.1021/jp911523h.

PMID:
20518574
11.

Comparative molecular dynamics of mesophilic and psychrophilic protein homologues studied by 1.2 ns simulations.

Brandsdal BO, Heimstad ES, Sylte I, Smalås AO.

J Biomol Struct Dyn. 1999 Dec;17(3):493-506.

PMID:
10636084
12.

Sequence and structural parameters enhancing adaptation of proteins to low temperatures.

Jahandideh S, Abdolmaleki P, Jahandideh M, Barzegari Asadabadi E.

J Theor Biol. 2007 May 7;246(1):159-66. Epub 2006 Dec 12.

PMID:
17275036
13.

Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations.

Du X, Sang P, Xia YL, Li Y, Liang J, Ai SM, Ji XL, Fu YX, Liu SQ.

J Biomol Struct Dyn. 2017 May;35(7):1500-1517. doi: 10.1080/07391102.2016.1188155. Epub 2016 Aug 2.

PMID:
27485684
14.

Calculation of protein heat capacity from replica-exchange molecular dynamics simulations with different implicit solvent models.

Yeh IC, Lee MS, Olson MA.

J Phys Chem B. 2008 Nov 27;112(47):15064-73. doi: 10.1021/jp802469g.

PMID:
18959439
15.

Thermal unfolding simulations of apo-calmodulin using leap-dynamics.

Kleinjung J, Fraternali F, Martin SR, Bayley PM.

Proteins. 2003 Mar 1;50(4):648-56.

PMID:
12577271
16.

Molecular dynamics studies on the thermostability of family 11 xylanases.

Purmonen M, Valjakka J, Takkinen K, Laitinen T, Rouvinen J.

Protein Eng Des Sel. 2007 Nov;20(11):551-9. Epub 2007 Oct 30.

PMID:
17977846
17.

Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases.

Papaleo E, Olufsen M, De Gioia L, Brandsdal BO.

J Mol Graph Model. 2007 Jul;26(1):93-103. Epub 2006 Sep 30.

PMID:
17084098
19.

Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases.

Papaleo E, Pasi M, Riccardi L, Sambi I, Fantucci P, De Gioia L.

FEBS Lett. 2008 Mar 19;582(6):1008-18. doi: 10.1016/j.febslet.2008.02.048. Epub 2008 Feb 26.

20.

Thermodynamics and folding pathways of trpzip2: an accelerated molecular dynamics simulation study.

Yang L, Shao Q, Gao YQ.

J Phys Chem B. 2009 Jan 22;113(3):803-8. doi: 10.1021/jp803160f.

PMID:
19113829

Supplemental Content

Support Center