Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 263

1.

Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2.

Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM.

PLoS Biol. 2009 Feb 10;7(2):e38. doi: 10.1371/journal.pbio.1000038.

2.

New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs).

Feldman ME, Shokat KM.

Curr Top Microbiol Immunol. 2010;347:241-62. doi: 10.1007/82_2010_64. Review.

PMID:
20549474
3.

Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin.

Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, Cole DC, Ellingboe J, Ayral-Kaloustian S, Mansour TS, Gibbons JJ, Abraham RT, Nowak P, Zask A.

Cancer Res. 2009 Aug 1;69(15):6232-40. doi: 10.1158/0008-5472.CAN-09-0299. Epub 2009 Jul 7.

4.

Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin.

Bhagwat SV, Gokhale PC, Crew AP, Cooke A, Yao Y, Mantis C, Kahler J, Workman J, Bittner M, Dudkin L, Epstein DM, Gibson NW, Wild R, Arnold LD, Houghton PJ, Pachter JA.

Mol Cancer Ther. 2011 Aug;10(8):1394-406. doi: 10.1158/1535-7163.MCT-10-1099. Epub 2011 Jun 14.

5.

Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes.

Jhanwar-Uniyal M, Gillick JL, Neil J, Tobias M, Thwing ZE, Murali R.

Adv Biol Regul. 2015 Jan;57:64-74. doi: 10.1016/j.jbior.2014.09.004. Epub 2014 Sep 18.

PMID:
25442674
6.

Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility.

Gulati N, Karsy M, Albert L, Murali R, Jhanwar-Uniyal M.

Int J Oncol. 2009 Oct;35(4):731-40.

PMID:
19724909
7.

mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action.

Soliman GA, Acosta-Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, Fingar DC.

J Biol Chem. 2010 Mar 12;285(11):7866-79. doi: 10.1074/jbc.M109.096222. Epub 2009 Dec 18.

8.

An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1.

Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS.

J Biol Chem. 2009 Mar 20;284(12):8023-32. doi: 10.1074/jbc.M900301200. Epub 2009 Jan 15.

9.

Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition.

Breuleux M, Klopfenstein M, Stephan C, Doughty CA, Barys L, Maira SM, Kwiatkowski D, Lane HA.

Mol Cancer Ther. 2009 Apr;8(4):742-53. doi: 10.1158/1535-7163.MCT-08-0668.

10.

Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia.

Evangelisti C, Ricci F, Tazzari P, Tabellini G, Battistelli M, Falcieri E, Chiarini F, Bortul R, Melchionda F, Pagliaro P, Pession A, McCubrey JA, Martelli AM.

Leukemia. 2011 May;25(5):781-91. doi: 10.1038/leu.2011.20. Epub 2011 Feb 18.

PMID:
21331075
11.

Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR).

García-Martínez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM, Alessi DR.

Biochem J. 2009 Jun 12;421(1):29-42. doi: 10.1042/BJ20090489.

12.

PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling.

Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI, Hegg JW, Bandhakavi S, Griffin TJ, Kim DH.

J Biol Chem. 2007 Aug 31;282(35):25604-12. Epub 2007 Jun 28.

13.

ATP-site binding inhibitor effectively targets mTORC1 and mTORC2 complexes in glioblastoma.

Neil J, Shannon C, Mohan A, Laurent D, Murali R, Jhanwar-Uniyal M.

Int J Oncol. 2016 Mar;48(3):1045-52. doi: 10.3892/ijo.2015.3311. Epub 2015 Dec 28.

PMID:
26719046
14.

TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2.

Copp J, Manning G, Hunter T.

Cancer Res. 2009 Mar 1;69(5):1821-7. doi: 10.1158/0008-5472.CAN-08-3014. Epub 2009 Feb 24.

15.

Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth.

Acosta-Jaquez HA, Keller JA, Foster KG, Ekim B, Soliman GA, Feener EP, Ballif BA, Fingar DC.

Mol Cell Biol. 2009 Aug;29(15):4308-24. doi: 10.1128/MCB.01665-08. Epub 2009 Jun 1.

16.

A dual mTORC1 and mTORC2 inhibitor shows antitumor activity in esophageal squamous cell carcinoma cells and sensitizes them to cisplatin.

Huang Y, Xi Q, Chen Y, Wang J, Peng P, Xia S, Yu S.

Anticancer Drugs. 2013 Oct;24(9):889-98. doi: 10.1097/CAD.0b013e328363c64e.

PMID:
23838676
17.

mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling.

Julien LA, Carriere A, Moreau J, Roux PP.

Mol Cell Biol. 2010 Feb;30(4):908-21. doi: 10.1128/MCB.00601-09. Epub 2009 Dec 7.

18.

Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2.

Li W, Petrimpol M, Molle KD, Hall MN, Battegay EJ, Humar R.

Circ Res. 2007 Jan 5;100(1):79-87. Epub 2006 Nov 16.

19.

Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin.

Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA.

Mol Cell Biol. 2009 Mar;29(6):1411-20. doi: 10.1128/MCB.00782-08. Epub 2008 Dec 29.

20.

mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1).

García-Martínez JM, Alessi DR.

Biochem J. 2008 Dec 15;416(3):375-85. doi: 10.1042/BJ20081668.

PMID:
18925875

Supplemental Content

Support Center