Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more.

Marinus MG, Casadesus J.

FEMS Microbiol Rev. 2009 May;33(3):488-503. doi: 10.1111/j.1574-6976.2008.00159.x. Epub 2009 Jan 19. Review.

2.

Epigenetic gene regulation in the bacterial world.

Casadesús J, Low D.

Microbiol Mol Biol Rev. 2006 Sep;70(3):830-56.

3.

Epigenetic regulation of the bacterial cell cycle.

Collier J.

Curr Opin Microbiol. 2009 Dec;12(6):722-9. doi: 10.1016/j.mib.2009.08.005. Epub 2009 Sep 23. Review.

PMID:
19783470
4.
5.

The great GATC: DNA methylation in E. coli.

Barras F, Marinus MG.

Trends Genet. 1989 May;5(5):139-43. Review.

PMID:
2667217
6.

Role of DNA methyltransferases in epigenetic regulation in bacteria.

Kumar R, Rao DN.

Subcell Biochem. 2013;61:81-102. doi: 10.1007/978-94-007-4525-4_4. Review.

PMID:
23150247
7.

Detection of N6-methyladenine in GATC sequences of Selenomonas ruminantium.

Pristas P, Molnarova V, Javorsky P.

J Basic Microbiol. 1998;38(4):283-7.

PMID:
9791949
8.

N6-methyl-adenine: an epigenetic signal for DNA-protein interactions.

Wion D, Casadesús J.

Nat Rev Microbiol. 2006 Mar;4(3):183-92. Review.

9.

Dam methylation: coordinating cellular processes.

Løbner-Olesen A, Skovgaard O, Marinus MG.

Curr Opin Microbiol. 2005 Apr;8(2):154-60. Review.

PMID:
15802246
10.

The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach.

Gonzalez D, Kozdon JB, McAdams HH, Shapiro L, Collier J.

Nucleic Acids Res. 2014 Apr;42(6):3720-35. doi: 10.1093/nar/gkt1352. Epub 2014 Jan 7.

11.

Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide.

Wood RJ, Maynard-Smith MD, Robinson VL, Oyston PC, Titball RW, Roach PL.

PLoS One. 2007 Aug 29;2(8):e801.

12.

Role of architectural elements in combinatorial regulation of initiation of DNA replication in Escherichia coli.

Polaczek P, Kwan K, Liberies DA, Campbell JL.

Mol Microbiol. 1997 Oct;26(2):261-75.

13.

Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: potential implications for methylation-independent transcriptional repression.

Horton JR, Zhang X, Blumenthal RM, Cheng X.

Nucleic Acids Res. 2015 Apr 30;43(8):4296-308. doi: 10.1093/nar/gkv251. Epub 2015 Apr 6.

14.

[The DNA-methylation state regulates virulence and stress response of Salmonella].

Chatti A, Landoulsi A.

C R Biol. 2008 Sep;331(9):648-54. doi: 10.1016/j.crvi.2008.06.002. Epub 2008 Jul 2. Review. French.

PMID:
18722983
15.

The oriC unwinding by dam methylation in Escherichia coli.

Yamaki H, Ohtsubo E, Nagai K, Maeda Y.

Nucleic Acids Res. 1988 Jun 10;16(11):5067-73.

16.

Importance of state of methylation of oriC GATC sites in initiation of DNA replication in Escherichia coli.

Smith DW, Garland AM, Herman G, Enns RE, Baker TA, Zyskind JW.

EMBO J. 1985 May;4(5):1319-26.

17.

GATC flanking sequences regulate Dam activity: evidence for how Dam specificity may influence pap expression.

Peterson SN, Reich NO.

J Mol Biol. 2006 Jan 20;355(3):459-72. Epub 2005 Nov 18.

PMID:
16321401
18.
19.

Bacterial DNA Methylation and Methylomes.

Casadesús J.

Adv Exp Med Biol. 2016;945:35-61. Review.

PMID:
27826834
20.

DNA adenine methylation and bacterial pathogenesis.

Heusipp G, Fälker S, Schmidt MA.

Int J Med Microbiol. 2007 Feb;297(1):1-7. Epub 2006 Nov 27. Review.

PMID:
17126598

Supplemental Content

Support Center