Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 65

1.

Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging.

Medarova Z, Rashkovetsky L, Pantazopoulos P, Moore A.

Cancer Res. 2009 Feb 1;69(3):1182-9. doi: 10.1158/0008-5472.CAN-08-2001. Epub 2009 Jan 13.

2.

Targeted imaging of breast tumor progression and therapeutic response in a human uMUC-1 expressing transgenic mouse model.

Ghosh SK, Uchida M, Yoo B, Ross AW, Gendler SJ, Gong J, Moore A, Medarova Z.

Int J Cancer. 2013 Apr 15;132(8):1860-7. doi: 10.1002/ijc.27872. Epub 2012 Oct 25.

3.

Predictive imaging of chemotherapeutic response in a transgenic mouse model of pancreatic cancer.

Wang P, Yoo B, Sherman S, Mukherjee P, Ross A, Pantazopoulos P, Petkova V, Farrar C, Medarova Z, Moore A.

Int J Cancer. 2016 Aug 1;139(3):712-8. doi: 10.1002/ijc.30098. Epub 2016 Apr 15.

4.

In vivo imaging of tumor response to therapy using a dual-modality imaging strategy.

Medarova Z, Pham W, Kim Y, Dai G, Moore A.

Int J Cancer. 2006 Jun 1;118(11):2796-802.

5.

Image-guided breast tumor therapy using a small interfering RNA nanodrug.

Kumar M, Yigit M, Dai G, Moore A, Medarova Z.

Cancer Res. 2010 Oct 1;70(19):7553-61. doi: 10.1158/0008-5472.CAN-10-2070. Epub 2010 Aug 11.

6.

Cross-linked iron oxide–C-AHA-AREPPTRTFAYWGK(FITC).

The MICAD Research Team.

Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013.
2006 Jul 26 [updated 2006 Aug 14].

7.

In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe.

Moore A, Medarova Z, Potthast A, Dai G.

Cancer Res. 2004 Mar 1;64(5):1821-7.

8.

Multiparameter noninvasive assessment of treatment susceptibility, drug target inhibition and tumor response guides cancer treatment.

Gee MS, Upadhyay R, Bergquist H, Weissleder R, Josephson L, Mahmood U.

Int J Cancer. 2007 Dec 1;121(11):2492-500.

9.

Multimodal imaging probe for targeting cancer cells using uMUC-1 aptamer.

Kang WJ, Lee J, Lee YS, Cho S, Ali BA, Al-Khedhairy AA, Heo H, Kim S.

Colloids Surf B Biointerfaces. 2015 Dec 1;136:134-40. doi: 10.1016/j.colsurfb.2015.09.004. Epub 2015 Sep 5.

PMID:
26387066
10.

Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy.

Gee MS, Upadhyay R, Bergquist H, Alencar H, Reynolds F, Maricevich M, Weissleder R, Josephson L, Mahmood U.

Radiology. 2008 Sep;248(3):925-35. doi: 10.1148/radiol.2482071496. Epub 2008 Jul 22.

11.

Primary human breast adenocarcinoma: imaging and histologic correlates of intrinsic susceptibility-weighted MR imaging before and during chemotherapy.

Li SP, Taylor NJ, Makris A, Ah-See ML, Beresford MJ, Stirling JJ, d'Arcy JA, Collins DJ, Padhani AR.

Radiology. 2010 Dec;257(3):643-52. doi: 10.1148/radiol.10100421. Epub 2010 Sep 21.

PMID:
20858850
12.

Development and application of a dual-purpose nanoparticle platform for delivery and imaging of siRNA in tumors.

Medarova Z, Kumar M, Ng SW, Moore A.

Methods Mol Biol. 2009;555:1-13. doi: 10.1007/978-1-60327-295-7_1.

13.

Sequence-dependent combination therapy with doxorubicin and a survivin-specific small interfering RNA nanodrug demonstrates efficacy in models of adenocarcinoma.

Ghosh SK, Yigit MV, Uchida M, Ross AW, Barteneva N, Moore A, Medarova Z.

Int J Cancer. 2014 Apr 1;134(7):1758-66. doi: 10.1002/ijc.28499. Epub 2013 Oct 15.

14.

Dynamic contrast-enhanced micro-computed tomography correlates with 3-dimensional fluorescence ultramicroscopy in antiangiogenic therapy of breast cancer xenografts.

Pöschinger T, Renner A, Eisa F, Dobosz M, Strobel S, Weber TG, Brauweiler R, Kalender WA, Scheuer W.

Invest Radiol. 2014 Jul;49(7):445-56. doi: 10.1097/RLI.0000000000000038.

PMID:
24598441
15.

A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer.

Li J, Cai P, Shalviri A, Henderson JT, He C, Foltz WD, Prasad P, Brodersen PM, Chen Y, DaCosta R, Rauth AM, Wu XY.

ACS Nano. 2014 Oct 28;8(10):9925-40. doi: 10.1021/nn501069c. Epub 2014 Oct 13.

PMID:
25307677
16.

Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI.

Jafari A, Salouti M, Shayesteh SF, Heidari Z, Rajabi AB, Boustani K, Nahardani A.

Nanotechnology. 2015 Feb 20;26(7):075101. doi: 10.1088/0957-4484/26/7/075101. Epub 2015 Feb 2.

PMID:
25642737
17.

A multimodal magnetic resonance imaging nanoplatform for cancer theranostics.

Benyettou F, Lalatonne Y, Chebbi I, Di Benedetto M, Serfaty JM, Lecouvey M, Motte L.

Phys Chem Chem Phys. 2011 Jun 7;13(21):10020-7. doi: 10.1039/c0cp02034f. Epub 2011 Mar 15.

PMID:
21409252
18.

Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts.

Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, Li C.

Cancer Res. 2003 Nov 15;63(22):7870-5.

20.

Proton MR spectroscopy for monitoring early treatment response of breast cancer to neo-adjuvant chemotherapy.

Baek HM, Chen JH, Nalcioglu O, Su MY.

Ann Oncol. 2008 May;19(5):1022-4. doi: 10.1093/annonc/mdn121. Epub 2008 Mar 27. No abstract available.

Supplemental Content

Support Center