Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 276

1.

Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy.

Mathupala SP, Ko YH, Pedersen PL.

Semin Cancer Biol. 2009 Feb;19(1):17-24. doi: 10.1016/j.semcancer.2008.11.006. Epub 2008 Dec 3. Review.

3.
5.

The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies.

Mathupala SP, Ko YH, Pedersen PL.

Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1225-30. doi: 10.1016/j.bbabio.2010.03.025. Epub 2010 Apr 8. Review.

6.
8.

The HK2 Dependent "Warburg Effect" and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate.

Lis P, Dyląg M, Niedźwiecka K, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S.

Molecules. 2016 Dec 15;21(12). pii: E1730. Review.

10.

Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.

Lu CL, Qin L, Liu HC, Candas D, Fan M, Li JJ.

PLoS One. 2015 Mar 25;10(3):e0121046. doi: 10.1371/journal.pone.0121046. eCollection 2015.

11.

The cancer cell's "power plants" as promising therapeutic targets: an overview.

Pedersen PL.

J Bioenerg Biomembr. 2007 Feb;39(1):1-12. Review.

PMID:
17404823
12.

An in situ study of bioenergetic properties of human colorectal cancer: the regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome.

Kaldma A, Klepinin A, Chekulayev V, Mado K, Shevchuk I, Timohhina N, Tepp K, Kandashvili M, Varikmaa M, Koit A, Planken M, Heck K, Truu L, Planken A, Valvere V, Rebane E, Kaambre T.

Int J Biochem Cell Biol. 2014 Oct;55:171-86. doi: 10.1016/j.biocel.2014.09.004. Epub 2014 Sep 10.

PMID:
25218857
13.

Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.

Rodrigues-Ferreira C, da Silva AP, Galina A.

J Bioenerg Biomembr. 2012 Feb;44(1):39-49. doi: 10.1007/s10863-012-9413-8. Epub 2012 Feb 10.

PMID:
22322891
14.

Warburg effect increases steady-state ROS condition in cancer cells through decreasing their antioxidant capacities (anticancer effects of 3-bromopyruvate through antagonizing Warburg effect).

El Sayed SM, Mahmoud AA, El Sawy SA, Abdelaal EA, Fouad AM, Yousif RS, Hashim MS, Hemdan SB, Kadry ZM, Abdelmoaty MA, Gabr AG, Omran FM, Nabo MM, Ahmed NS.

Med Hypotheses. 2013 Nov;81(5):866-70. doi: 10.1016/j.mehy.2013.08.024. Epub 2013 Sep 3.

PMID:
24071366
15.
16.

Mitochondrial hexokinase of rat hepatoma cells in culture: solubilization and kinetic properties.

Bustamante E, Pedersen PL.

Biochemistry. 1980 Oct 28;19(22):4972-7.

PMID:
6779859
17.

Mitochondria: 3-bromopyruvate vs. mitochondria? A small molecule that attacks tumors by targeting their bioenergetic diversity.

Galina A.

Int J Biochem Cell Biol. 2014 Sep;54:266-71. doi: 10.1016/j.biocel.2014.05.013. Epub 2014 May 16.

PMID:
24842108
18.

Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit.

Gerbitz KD, Gempel K, Brdiczka D.

Diabetes. 1996 Feb;45(2):113-26. Review.

PMID:
8549853
19.

Supplemental Content

Support Center