Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 134

1.

Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging.

Zawadzki RJ, Jones SM, Olivier SS, Zhao M, Bower BA, Izatt JA, Choi S, Laut S, Werner JS.

Opt Express. 2005 Oct 17;13(21):8532-8546.

2.

Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions.

Zawadzki RJ, Choi SS, Jones SM, Oliver SS, Werner JS.

J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1373-83.

3.

In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

Wong KS, Jian Y, Cua M, Bonora S, Zawadzki RJ, Sarunic MV.

Biomed Opt Express. 2015 Jan 16;6(2):580-90. doi: 10.1364/BOE.6.000580. eCollection 2015 Feb 1.

4.

Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging.

Zawadzki RJ, Jones SM, Pilli S, Balderas-Mata S, Kim DY, Olivier SS, Werner JS.

Biomed Opt Express. 2011 Jun 1;2(6):1674-86. doi: 10.1364/BOE.2.001674. Epub 2011 May 24.

5.

High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography.

Zhang Y, Cense B, Rha J, Jonnal RS, Gao W, Zawadzki RJ, Werner JS, Jones S, Olivier S, Miller DT.

Opt Express. 2006 May 15;14(10):4380-94. doi: 10.1364/OE.14.004380.

6.

Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy.

Merino D, Dainty C, Bradu A, Podoleanu AG.

Opt Express. 2006 Apr 17;14(8):3345-53.

PMID:
19516479
7.

Adaptive-optics ultrahigh-resolution optical coherence tomography.

Hermann B, Fernández EJ, Unterhuber A, Sattmann H, Fercher AF, Drexler W, Prieto PM, Artal P.

Opt Lett. 2004 Sep 15;29(18):2142-4.

PMID:
15460883
8.

Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina.

Choi W, Baumann B, Swanson EA, Fujimoto JG.

Opt Express. 2012 Nov 5;20(23):25357-68. doi: 10.1364/OE.20.025357.

9.

Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.

Zawadzki RJ, Zhang P, Zam A, Miller EB, Goswami M, Wang X, Jonnal RS, Lee SH, Kim DY, Flannery JG, Werner JS, Burns ME, Pugh EN Jr.

Biomed Opt Express. 2015 May 21;6(6):2191-210. doi: 10.1364/BOE.6.002191. eCollection 2015 Jun 1.

10.

Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.

Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS.

Ophthalmology. 2005 Oct;112(10):1734-46.

11.

Adaptive optics optical coherence tomography for in vivo mouse retinal imaging.

Jian Y, Zawadzki RJ, Sarunic MV.

J Biomed Opt. 2013 May;18(5):56007. doi: 10.1117/1.JBO.18.5.056007.

12.

Progress on Developing Adaptive Optics-Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts.

Zawadzki RJ, Capps AG, Kim DY, Panorgias A, Stevenson SB, Hamann B, Werner JS.

IEEE J Sel Top Quantum Electron. 2014 Mar;20(2). pii: 7100912.

13.

Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging.

Bigelow CE, Iftimia NV, Ferguson RD, Ustun TE, Bloom B, Hammer DX.

J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1327-36.

PMID:
17429478
14.

Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction.

Zawadzki RJ, Cense B, Zhang Y, Choi SS, Miller DT, Werner JS.

Opt Express. 2008 May 26;16(11):8126-43.

15.

Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography.

Lee SH, Werner JS, Zawadzki RJ.

Biomed Opt Express. 2013 Oct 17;4(11):2508-17. doi: 10.1364/BOE.4.002508. eCollection 2013.

16.

Adaptive optics and the eye (super resolution OCT).

Miller DT, Kocaoglu OP, Wang Q, Lee S.

Eye (Lond). 2011 Mar;25(3):321-30. doi: 10.1038/eye.2011.1.

17.

Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography.

Kurokawa K, Sasaki K, Makita S, Yamanari M, Cense B, Yasuno Y.

Opt Express. 2010 Apr 12;18(8):8515-27. doi: 10.1364/OE.18.008515.

PMID:
20588698
18.

High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography.

Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG.

Ophthalmology. 2006 Nov;113(11):2054.e1-14.

19.

Imaging of titanium:sapphire laser retinal injury by adaptive optics fundus imaging and Fourier-domain optical coherence tomography.

Kitaguchi Y, Fujikado T, Kusaka S, Yamaguchi T, Mihashi T, Tano Y.

Am J Ophthalmol. 2009 Jul;148(1):97-104.e2. doi: 10.1016/j.ajo.2009.01.019. Epub 2009 Mar 27.

PMID:
19327747
20.

Lens-based wavefront sensorless adaptive optics swept source OCT.

Jian Y, Lee S, Ju MJ, Heisler M, Ding W, Zawadzki RJ, Bonora S, Sarunic MV.

Sci Rep. 2016 Jun 9;6:27620. doi: 10.1038/srep27620.

Supplemental Content

Support Center