Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Histone H2AX phosphorylation in response to changes in chromatin structure induced by altered osmolarity.

Baure J, Izadi A, Suarez V, Giedzinski E, Cleaver JE, Fike JR, Limoli CL.

Mutagenesis. 2009 Mar;24(2):161-7. doi: 10.1093/mutage/gen064. Epub 2008 Dec 8.

2.
4.

Rapid phosphorylation of histone H2A.X following ionotropic glutamate receptor activation.

Crowe SL, Movsesyan VA, Jorgensen TJ, Kondratyev A.

Eur J Neurosci. 2006 May;23(9):2351-61.

5.

Generation of S phase-dependent DNA double-strand breaks by Cr(VI) exposure: involvement of ATM in Cr(VI) induction of gamma-H2AX.

Ha L, Ceryak S, Patierno SR.

Carcinogenesis. 2004 Nov;25(11):2265-74. Epub 2004 Jul 29.

PMID:
15284180
6.

Photobleaching of GFP-labeled H2AX in chromatin: H2AX has low diffusional mobility in the nucleus.

Siino JS, Nazarov IB, Svetlova MP, Solovjeva LV, Adamson RH, Zalenskaya IA, Yau PM, Bradbury EM, Tomilin NV.

Biochem Biophys Res Commun. 2002 Oct 11;297(5):1318-23.

PMID:
12372432
7.

Chipping away at gamma-H2AX foci.

Savic V, Sanborn KB, Orange JS, Bassing CH.

Cell Cycle. 2009 Oct 15;8(20):3285-90. Epub 2009 Oct 4.

8.

Megabase chromatin domains involved in DNA double-strand breaks in vivo.

Rogakou EP, Boon C, Redon C, Bonner WM.

J Cell Biol. 1999 Sep 6;146(5):905-16.

9.

Mechanism of elimination of phosphorylated histone H2AX from chromatin after repair of DNA double-strand breaks.

Svetlova MP, Solovjeva LV, Tomilin NV.

Mutat Res. 2010 Mar 1;685(1-2):54-60. doi: 10.1016/j.mrfmmm.2009.08.001. Epub 2009 Aug 12. Review.

PMID:
19682466
10.

A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage.

Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM.

Curr Biol. 2000 Jul 27-Aug 10;10(15):886-95.

11.

Formation of dynamic gamma-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin.

Savic V, Yin B, Maas NL, Bredemeyer AL, Carpenter AC, Helmink BA, Yang-Iott KS, Sleckman BP, Bassing CH.

Mol Cell. 2009 May 15;34(3):298-310. doi: 10.1016/j.molcel.2009.04.012.

12.

Explanation for excessive DNA single-strand breaks and endogenous repair foci in pluripotent mouse embryonic stem cells.

Banáth JP, Bañuelos CA, Klokov D, MacPhail SM, Lansdorp PM, Olive PL.

Exp Cell Res. 2009 May 1;315(8):1505-20. doi: 10.1016/j.yexcr.2008.12.007. Epub 2008 Dec 24.

PMID:
19154734
13.
14.

Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin.

Kinner A, Wu W, Staudt C, Iliakis G.

Nucleic Acids Res. 2008 Oct;36(17):5678-94. doi: 10.1093/nar/gkn550. Epub 2008 Sep 4. Review.

15.

DNA double-strand breaks and gamma-H2AX signaling in the testis.

Hamer G, Roepers-Gajadien HL, van Duyn-Goedhart A, Gademan IS, Kal HB, van Buul PP, de Rooij DG.

Biol Reprod. 2003 Feb;68(2):628-34.

PMID:
12533428
16.

PP2A-B56ϵ complex is involved in dephosphorylation of γ-H2AX in the repair process of CPT-induced DNA double-strand breaks.

Li X, Nan A, Xiao Y, Chen Y, Lai Y.

Toxicology. 2015 May 4;331:57-65. doi: 10.1016/j.tox.2015.03.007. Epub 2015 Mar 12.

PMID:
25772433
17.

Histone H2AX phosphorylation after cell irradiation with UV-B: relationship to cell cycle phase and induction of apoptosis.

Halicka HD, Huang X, Traganos F, King MA, Dai W, Darzynkiewicz Z.

Cell Cycle. 2005 Feb;4(2):339-45. Epub 2005 Feb 21.

PMID:
15655354
19.

[NADP increases the level of histone H2AX phosphorylation in mouse heart cells after ionizing radiation].

Firsanov DV, Kropotov AV, Mikhaĭlov VM.

Tsitologiia. 2011;53(4):355-8. Russian.

PMID:
21675215
20.

Radiation-induced H2AX phosphorylation and neural precursor apoptosis in the developing brain of mice.

Nowak E, Etienne O, Millet P, Lages CS, Mathieu C, Mouthon MA, Boussin FD.

Radiat Res. 2006 Feb;165(2):155-64.

PMID:
16435914

Supplemental Content

Support Center