Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 185

1.

Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation.

Lyon DY, Alvarez PJ.

Environ Sci Technol. 2008 Nov 1;42(21):8127-32.

PMID:
19031913
2.

Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage.

Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJ.

Nano Lett. 2008 May;8(5):1539-43. doi: 10.1021/nl0726398. Epub 2008 Apr 15.

PMID:
18410152
3.

Delineating oxidative processes of aqueous C60 preparations: role of THF peroxide.

Zhang B, Cho M, Fortner JD, Lee J, Huang CH, Hughes JB, Kim JH.

Environ Sci Technol. 2009 Jan 1;43(1):108-13.

PMID:
19209592
4.

Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.

Brunet L, Lyon DY, Hotze EM, Alvarez PJ, Wiesner MR.

Environ Sci Technol. 2009 Jun 15;43(12):4355-60.

PMID:
19603646
5.

Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size.

Lyon DY, Adams LK, Falkner JC, Alvarezt PJ.

Environ Sci Technol. 2006 Jul 15;40(14):4360-6.

PMID:
16903271
6.

Bacterial cell association and antimicrobial activity of a C60 water suspension.

Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughe JB.

Environ Toxicol Chem. 2005 Nov;24(11):2757-62.

PMID:
16398110
7.

Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior.

Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJ.

Environ Sci Technol. 2007 Apr 1;41(7):2636-42.

PMID:
17438827
8.

Intrinsic biological property of colloidal fullerene nanoparticles (nC60): lack of lethality after high dose exposure to human epidermal and bacterial cells.

Xia XR, Monteiro-Riviere NA, Riviere JE.

Toxicol Lett. 2010 Aug 16;197(2):128-34. doi: 10.1016/j.toxlet.2010.05.010. Epub 2010 May 21.

PMID:
20493935
9.

Escherichia coli inactivation by water-soluble, ozonated C60 derivative: kinetics and mechanisms.

Cho M, Fortner JD, Hughes JB, Kim JH.

Environ Sci Technol. 2009 Oct 1;43(19):7410-5.

PMID:
19848154
10.

Catalytic system of the reactive oxygen species on the C60 fullerene basis.

Burlaka AP, Sidorik YP, Prylutska SV, Matyshevska OP, Golub OA, Prylutskyy YI, Scharff P.

Exp Oncol. 2004 Dec;26(4):326-7.

PMID:
15627068
11.

Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: a revision of previous reports.

Henry TB, Petersen EJ, Compton RN.

Curr Opin Biotechnol. 2011 Aug;22(4):533-7. doi: 10.1016/j.copbio.2011.05.511. Epub 2011 Jun 28. Review.

PMID:
21719272
12.

Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60).

Markovic Z, Trajkovic V.

Biomaterials. 2008 Sep;29(26):3561-73. doi: 10.1016/j.biomaterials.2008.05.005. Epub 2008 Jun 4. Review.

PMID:
18534675
13.

Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.

Hotze EM, Labille J, Alvarez P, Wiesner MR.

Environ Sci Technol. 2008 Jun 1;42(11):4175-80.

PMID:
18589984
14.

Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport.

Chae SR, Badireddy AR, Farner Budarz J, Lin S, Xiao Y, Therezien M, Wiesner MR.

ACS Nano. 2010 Sep 28;4(9):5011-8. doi: 10.1021/nn100620d.

PMID:
20707347
15.

Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension.

Li D, Lyon DY, Li Q, Alvarez PJ.

Environ Toxicol Chem. 2008 Sep;27(9):1888-94.

PMID:
19086207
16.

The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes.

Markovic Z, Todorovic-Markovic B, Kleut D, Nikolic N, Vranjes-Djuric S, Misirkic M, Vucicevic L, Janjetovic K, Isakovic A, Harhaji L, Babic-Stojic B, Dramicanin M, Trajkovic V.

Biomaterials. 2007 Dec;28(36):5437-48. Epub 2007 Sep 19.

PMID:
17884160
17.

Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity.

Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA, Tarabara VV.

Environ Sci Technol. 2006 Dec 1;40(23):7394-401.

PMID:
17180994
18.

Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene.

Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trajkovic V.

Toxicol Sci. 2006 May;91(1):173-83. Epub 2006 Feb 13.

PMID:
16476688
19.

Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y.

ACS Nano. 2011 Sep 27;5(9):6971-80. doi: 10.1021/nn202451x. Epub 2011 Aug 24.

PMID:
21851105
20.

Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli.

Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB.

Appl Microbiol Biotechnol. 2010 Jan;85(4):1115-22. doi: 10.1007/s00253-009-2159-5. Epub 2009 Aug 11.

PMID:
19669753

Supplemental Content

Support Center