Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

Transforming human blood stem and progenitor cells: a new way forward in leukemia modeling.

Mulloy JC, Wunderlich M, Zheng Y, Wei J.

Cell Cycle. 2008 Nov 1;7(21):3314-9. Epub 2008 Nov 8.

2.

Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia.

Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS, Zheng Y, Cancelas JA, Gu Y, Jansen M, Dimartino JF, Mulloy JC.

Cancer Cell. 2008 Jun;13(6):483-95. doi: 10.1016/j.ccr.2008.04.020.

3.

MLL-AF9 leukemia stem cells: hardwired or taking cues from the microenvironment?

Muntean AG, Hess JL.

Cancer Cell. 2008 Jun;13(6):465-7. doi: 10.1016/j.ccr.2008.05.012.

4.

Frat2 mediates the oncogenic activation of Rac by MLL fusions.

Walf-Vorderwülbecke V, de Boer J, Horton SJ, van Amerongen R, Proost N, Berns A, Williams O.

Blood. 2012 Dec 6;120(24):4819-28. doi: 10.1182/blood-2012-05-432534. Epub 2012 Oct 16.

5.

The full transforming capacity of MLL-Af4 is interlinked with lymphoid lineage commitment.

Lin S, Luo RT, Shrestha M, Thirman MJ, Mulloy JC.

Blood. 2017 Aug 17;130(7):903-907. doi: 10.1182/blood-2017-04-777185. Epub 2017 Jun 21.

6.

MLL-AF9-mediated immortalization of human hematopoietic cells along different lineages changes during ontogeny.

Horton SJ, Jaques J, Woolthuis C, van Dijk J, Mesuraca M, Huls G, Morrone G, Vellenga E, Schuringa JJ.

Leukemia. 2013 Apr;27(5):1116-26. doi: 10.1038/leu.2012.343. Epub 2012 Nov 26.

PMID:
23178754
7.

Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.

Barabé F, Gil L, Celton M, Bergeron A, Lamontagne V, Roques É, Lagacé K, Forest A, Johnson R, Pécheux L, Simard J, Pelloux J, Bellemare-Pelletier A, Gagnon E, Hébert J, Cellot S, Wilhelm BT.

Leukemia. 2017 May;31(5):1166-1176. doi: 10.1038/leu.2016.302. Epub 2016 Oct 26.

PMID:
27780967
8.

Downregulation of RUNX1/CBFβ by MLL fusion proteins enhances hematopoietic stem cell self-renewal.

Zhao X, Chen A, Yan X, Zhang Y, He F, Hayashi Y, Dong Y, Rao Y, Li B, Conway RM, Maiques-Diaz A, Elf SE, Huang N, Zuber J, Xiao Z, Tse W, Tenen DG, Wang Q, Chen W, Mulloy JC, Nimer SD, Huang G.

Blood. 2014 Mar 13;123(11):1729-38. doi: 10.1182/blood-2013-03-489575. Epub 2014 Jan 21.

9.

Plzf drives MLL-fusion-mediated leukemogenesis specifically in long-term hematopoietic stem cells.

Ono R, Masuya M, Nakajima H, Enomoto Y, Miyata E, Nakamura A, Ishii S, Suzuki K, Shibata-Minoshima F, Katayama N, Kitamura T, Nosaka T.

Blood. 2013 Aug 15;122(7):1271-83. doi: 10.1182/blood-2012-09-456665. Epub 2013 Jul 9.

10.

MLL-AF9 and FLT3 cooperation in acute myelogenous leukemia: development of a model for rapid therapeutic assessment.

Stubbs MC, Kim YM, Krivtsov AV, Wright RD, Feng Z, Agarwal J, Kung AL, Armstrong SA.

Leukemia. 2008 Jan;22(1):66-77. Epub 2007 Sep 13.

11.

Enforced expression of MLL-AF4 fusion in cord blood CD34+ cells enhances the hematopoietic repopulating cell function and clonogenic potential but is not sufficient to initiate leukemia.

Montes R, Ayllón V, Gutierrez-Aranda I, Prat I, Hernández-Lamas MC, Ponce L, Bresolin S, Te Kronnie G, Greaves M, Bueno C, Menendez P.

Blood. 2011 May 5;117(18):4746-58. doi: 10.1182/blood-2010-12-322230. Epub 2011 Mar 9.

12.

p27kip1 maintains a subset of leukemia stem cells in the quiescent state in murine MLL-leukemia.

Zhang J, Seet CS, Sun C, Li J, You D, Volk A, Breslin P, Li X, Wei W, Qian Z, Zeleznik-Le NJ, Zhang Z, Zhang J.

Mol Oncol. 2013 Dec;7(6):1069-82. doi: 10.1016/j.molonc.2013.07.011. Epub 2013 Aug 20.

13.

MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L.

Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV, Feng Z, Punt N, Daigle A, Bullinger L, Pollock RM, Richon VM, Kung AL, Armstrong SA.

Cancer Cell. 2011 Jul 12;20(1):66-78. doi: 10.1016/j.ccr.2011.06.010.

14.

MLL leukemia induction by genome editing of human CD34+ hematopoietic cells.

Buechele C, Breese EH, Schneidawind D, Lin CH, Jeong J, Duque-Afonso J, Wong SH, Smith KS, Negrin RS, Porteus M, Cleary ML.

Blood. 2015 Oct 1;126(14):1683-94. doi: 10.1182/blood-2015-05-646398. Epub 2015 Aug 26.

15.

Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells.

Chen W, Kumar AR, Hudson WA, Li Q, Wu B, Staggs RA, Lund EA, Sam TN, Kersey JH.

Cancer Cell. 2008 May;13(5):432-40. doi: 10.1016/j.ccr.2008.03.005.

16.
17.

Hematopoietic stem cells are intrinsically protected against MLL-ENL-mediated transformation.

Ugale A, Norddahl GL, Wahlestedt M, Säwén P, Jaako P, Pronk CJ, Soneji S, Cammenga J, Bryder D.

Cell Rep. 2014 Nov 20;9(4):1246-55. doi: 10.1016/j.celrep.2014.10.036. Epub 2014 Nov 13.

18.

DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis.

Nguyen AT, Taranova O, He J, Zhang Y.

Blood. 2011 Jun 23;117(25):6912-22. doi: 10.1182/blood-2011-02-334359. Epub 2011 Apr 26.

19.

The small oligomerization domain of gephyrin converts MLL to an oncogene.

Eguchi M, Eguchi-Ishimae M, Greaves M.

Blood. 2004 May 15;103(10):3876-82. Epub 2004 Jan 29.

20.

EVI1 is critical for the pathogenesis of a subset of MLL-AF9-rearranged AMLs.

Bindels EM, Havermans M, Lugthart S, Erpelinck C, Wocjtowicz E, Krivtsov AV, Rombouts E, Armstrong SA, Taskesen E, Haanstra JR, Beverloo HB, Döhner H, Hudson WA, Kersey JH, Delwel R, Kumar AR.

Blood. 2012 Jun 14;119(24):5838-49. doi: 10.1182/blood-2011-11-393827. Epub 2012 May 2.

Supplemental Content

Support Center