Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Spatially shifted beam approach to subwavelength focusing.

Markley L, Wong AM, Wang Y, Eleftheriades GV.

Phys Rev Lett. 2008 Sep 12;101(11):113901.

PMID:
18851280
2.

Experimental verification of subwavelength acoustic focusing using a near-field array of closely spaced elements.

Abasi R, Markley L, Eleftheriades GV.

J Acoust Soc Am. 2011 Dec;130(6):EL405-9. doi: 10.1121/1.3662029.

PMID:
22225134
3.

Dual polarized near-field focusing plate for near-field optical focusing in two dimensions.

Hosseini SA, Campione S, Capolino F.

Opt Express. 2011 Nov 21;19(24):24483-98. doi: 10.1364/OE.19.024483.

PMID:
22109475
4.

Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.

Kaina N, Lemoult F, Fink M, Lerosey G.

Nature. 2015 Sep 3;525(7567):77-81. doi: 10.1038/nature14678.

PMID:
26333466
5.

Loss-free and active optical negative-index metamaterials.

Xiao S, Drachev VP, Kildishev AV, Ni X, Chettiar UK, Yuan HK, Shalaev VM.

Nature. 2010 Aug 5;466(7307):735-8. doi: 10.1038/nature09278.

PMID:
20686570
6.

Experimental demonstration of near-infrared negative-index metamaterials.

Zhang S, Fan W, Panoiu NC, Malloy KJ, Osgood RM, Brueck SR.

Phys Rev Lett. 2005 Sep 23;95(13):137404.

PMID:
16197179
7.

Near-field beam focusing by a single bare subwavelength metal slit with the high-index transmission space.

Guo Y, Zhao B, Yang J.

Opt Express. 2013 Jun 17;21(12):13949-57. doi: 10.1364/OE.21.013949.

PMID:
23787584
8.

Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach.

Pusch A, Wuestner S, Hamm JM, Tsakmakidis KL, Hess O.

ACS Nano. 2012 Mar 27;6(3):2420-31. doi: 10.1021/nn204692x.

PMID:
22329714
9.

All-angle negative refraction and active flat lensing of ultraviolet light.

Xu T, Agrawal A, Abashin M, Chau KJ, Lezec HJ.

Nature. 2013 May 23;497(7450):470-4. doi: 10.1038/nature12158.

PMID:
23698446
10.

A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance.

Shafiei F, Monticone F, Le KQ, Liu XX, Hartsfield T, Alù A, Li X.

Nat Nanotechnol. 2013 Feb;8(2):95-9. doi: 10.1038/nnano.2012.249. Erratum in: Nat Nanotechnol. 2013 Mar;8(3):218.

PMID:
23353675
11.

Subwavelength resolution in a two-dimensional photonic-crystal-based superlens.

Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis CM.

Phys Rev Lett. 2003 Nov 14;91(20):207401. Erratum in: Phys Rev Lett. 2008 Sep 19;101(12):129903. Foteinopolou, S [corrected to Foteinopoulou, S].

PMID:
14683392
12.

A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber.

Xie Y, Fan X, Chen Y, Wilson JD, Simons RN, Xiao JQ.

Sci Rep. 2017 Jan 10;7:40490. doi: 10.1038/srep40490.

13.

Subwavelength far-field resolution in a square two-dimensional photonic crystal.

Zhang X.

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 2B):037601.

PMID:
15903644
14.

Limits for superfocusing with finite evanescent wave amplification.

Gordon R.

Opt Lett. 2012 Mar 1;37(5):912-4. doi: 10.1364/OL.37.000912.

PMID:
22378436
15.

Metascreen-based superdirective antenna in the optical frequency regime.

Ludwig A, Sarris CD, Eleftheriades GV.

Phys Rev Lett. 2012 Nov 30;109(22):223901. Erratum in: Phys Rev Lett. 2013 Apr 12;110(15):159902.

PMID:
23368119
16.

Subwavelength focusing using a hyperbolic medium with a single slit.

Li G, Li J, Cheah KW.

Appl Opt. 2011 Nov 1;50(31):G27-30. doi: 10.1364/AO.50.000G27.

PMID:
22086043
17.

Some properties of the optical resonances in a single subwavelength slit.

Mata-Mendez O, Avendaño J.

J Opt Soc Am A Opt Image Sci Vis. 2007 Jun;24(6):1687-94.

PMID:
17491637
18.

A super-oscillatory lens optical microscope for subwavelength imaging.

Rogers ET, Lindberg J, Roy T, Savo S, Chad JE, Dennis MR, Zheludev NI.

Nat Mater. 2012 Mar 25;11(5):432-5. doi: 10.1038/nmat3280.

PMID:
22447113
19.

Three-dimensional point spread function and generalized amplitude transfer function of near-field flat lenses.

Zapata-Rodríguez CJ, Pastor D, Miret JJ.

Appl Opt. 2010 Oct 20;49(30):5870-7. doi: 10.1364/AO.49.005870.

PMID:
20962952
20.

Optical negative refraction by four-wave mixing in thin metallic nanostructures.

Palomba S, Zhang S, Park Y, Bartal G, Yin X, Zhang X.

Nat Mater. 2011 Oct 30;11(1):34-8. doi: 10.1038/nmat3148.

PMID:
22037671
Items per page

Supplemental Content

Support Center