Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Effect of proliferating cell nuclear antigen ubiquitination and chromatin structure on the dynamic properties of the Y-family DNA polymerases.

Sabbioneda S, Gourdin AM, Green CM, Zotter A, Giglia-Mari G, Houtsmuller A, Vermeulen W, Lehmann AR.

Mol Biol Cell. 2008 Dec;19(12):5193-202. doi: 10.1091/mbc.E08-07-0724. Epub 2008 Sep 17.

2.

Localization of Y-family polymerases and the DNA polymerase switch in mammalian cells.

Kannouche P, Lehmann A.

Methods Enzymol. 2006;408:407-15.

PMID:
16793383
3.

Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells.

Kannouche P, Fernández de Henestrosa AR, Coull B, Vidal AE, Gray C, Zicha D, Woodgate R, Lehmann AR.

EMBO J. 2003 Mar 3;22(5):1223-33.

4.

Proliferating cell nuclear antigen-dependent coordination of the biological functions of human DNA polymerase iota.

Vidal AE, Kannouche P, Podust VN, Yang W, Lehmann AR, Woodgate R.

J Biol Chem. 2004 Nov 12;279(46):48360-8. Epub 2004 Sep 1.

5.

Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells.

Kannouche P, Fernández de Henestrosa AR, Coull B, Vidal AE, Gray C, Zicha D, Woodgate R, Lehmann AR.

EMBO J. 2002 Nov 15;21(22):6246-56. Corrected and republished in: EMBO J. 2003 Mar 3;22(5):1223-33.

6.

Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen.

Hishiki A, Hashimoto H, Hanafusa T, Kamei K, Ohashi E, Shimizu T, Ohmori H, Sato M.

J Biol Chem. 2009 Apr 17;284(16):10552-60. doi: 10.1074/jbc.M809745200. Epub 2009 Feb 10.

7.

Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci.

Ogi T, Kannouche P, Lehmann AR.

J Cell Sci. 2005 Jan 1;118(Pt 1):129-36. Epub 2004 Dec 15.

8.

Different types of interaction between PCNA and PIP boxes contribute to distinct cellular functions of Y-family DNA polymerases.

Masuda Y, Kanao R, Kaji K, Ohmori H, Hanaoka F, Masutani C.

Nucleic Acids Res. 2015 Sep 18;43(16):7898-910. doi: 10.1093/nar/gkv712. Epub 2015 Jul 13.

9.

High mobility of flap endonuclease 1 and DNA polymerase eta associated with replication foci in mammalian S-phase nucleus.

Solovjeva L, Svetlova M, Sasina L, Tanaka K, Saijo M, Nazarov I, Bradbury M, Tomilin N.

Mol Biol Cell. 2005 May;16(5):2518-28. Epub 2005 Mar 9.

10.

Epstein-Barr virus BPLF1 deubiquitinates PCNA and attenuates polymerase η recruitment to DNA damage sites.

Whitehurst CB, Vaziri C, Shackelford J, Pagano JS.

J Virol. 2012 Aug;86(15):8097-106. doi: 10.1128/JVI.00588-12. Epub 2012 May 23.

11.

A non-catalytic role of DNA polymerase η in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks.

Durando M, Tateishi S, Vaziri C.

Nucleic Acids Res. 2013 Mar 1;41(5):3079-93. doi: 10.1093/nar/gkt016. Epub 2013 Jan 23.

12.

Ubiquitin mediates the physical and functional interaction between human DNA polymerases η and ι.

McIntyre J, Vidal AE, McLenigan MP, Bomar MG, Curti E, McDonald JP, Plosky BS, Ohashi E, Woodgate R.

Nucleic Acids Res. 2013 Feb 1;41(3):1649-60. doi: 10.1093/nar/gks1277. Epub 2012 Dec 16.

13.

Posttranslational Regulation of Human DNA Polymerase ι.

McIntyre J, McLenigan MP, Frank EG, Dai X, Yang W, Wang Y, Woodgate R.

J Biol Chem. 2015 Nov 6;290(45):27332-44. doi: 10.1074/jbc.M115.675769. Epub 2015 Sep 14.

14.

Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage.

Wit N, Buoninfante OA, van den Berk PC, Jansen JG, Hogenbirk MA, de Wind N, Jacobs H.

Nucleic Acids Res. 2015 Jan;43(1):282-94. doi: 10.1093/nar/gku1301. Epub 2014 Dec 10.

15.

Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis.

Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I.

Science. 2005 Dec 16;310(5755):1821-4.

16.

Interaction with DNA polymerase eta is required for nuclear accumulation of REV1 and suppression of spontaneous mutations in human cells.

Akagi J, Masutani C, Kataoka Y, Kan T, Ohashi E, Mori T, Ohmori H, Hanaoka F.

DNA Repair (Amst). 2009 May 1;8(5):585-99. doi: 10.1016/j.dnarep.2008.12.006. Epub 2009 Jan 21.

PMID:
19157994
17.

PCNA ubiquitination-independent activation of polymerase η during somatic hypermutation and DNA damage tolerance.

Krijger PH, van den Berk PC, Wit N, Langerak P, Jansen JG, Reynaud CA, de Wind N, Jacobs H.

DNA Repair (Amst). 2011 Oct 10;10(10):1051-9. doi: 10.1016/j.dnarep.2011.08.005. Epub 2011 Sep 1.

PMID:
21889916
18.

Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites.

Andersen PL, Xu F, Ziola B, McGregor WG, Xiao W.

Mol Biol Cell. 2011 Jul 1;22(13):2373-83. doi: 10.1091/mbc.E10-12-0938. Epub 2011 May 5.

19.

Requirement for functional DNA polymerase eta in genome-wide repair of UV-induced DNA damage during S phase.

Auclair Y, Rouget R, Belisle JM, Costantino S, Drobetsky EA.

DNA Repair (Amst). 2010 Jul 1;9(7):754-64. doi: 10.1016/j.dnarep.2010.03.013. Epub 2010 Apr 24.

PMID:
20457011
20.

Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells.

Kannouche P, Broughton BC, Volker M, Hanaoka F, Mullenders LH, Lehmann AR.

Genes Dev. 2001 Jan 15;15(2):158-72.

Supplemental Content

Support Center