Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94


Use of multidimensional fluorescence resonance energy transfer to establish the orientation of cholecystokinin docked at the type A cholecystokinin receptor.

Harikumar KG, Gao F, Pinon DI, Miller LJ.

Biochemistry. 2008 Sep 9;47(36):9574-81. doi: 10.1021/bi800734w. Epub 2008 Aug 13.


Measurement of intermolecular distances for the natural agonist Peptide docked at the cholecystokinin receptor expressed in situ using fluorescence resonance energy transfer.

Harikumar KG, Pinon DI, Wessels WS, Dawson ES, Lybrand TP, Prendergast FG, Miller LJ.

Mol Pharmacol. 2004 Jan;65(1):28-35.


Application of fluorescence resonance energy transfer techniques to establish ligand-receptor orientation.

Harikumar KG, Miller LJ.

Methods Mol Biol. 2009;552:293-304. doi: 10.1007/978-1-60327-317-6_21.


Refinement of the structure of the ligand-occupied cholecystokinin receptor using a photolabile amino-terminal probe.

Ding XQ, Dolu V, Hadac EM, Holicky EL, Pinon DI, Lybrand TP, Miller LJ.

J Biol Chem. 2001 Feb 9;276(6):4236-44. Epub 2000 Oct 24.


Distinct molecular mechanisms for agonist peptide binding to types A and B cholecystokinin receptors demonstrated using fluorescence spectroscopy.

Harikumar KG, Clain J, Pinon DI, Dong M, Miller LJ.

J Biol Chem. 2005 Jan 14;280(2):1044-50. Epub 2004 Nov 1.


Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity.

Cawston EE, Harikumar KG, Miller LJ.

Am J Physiol Cell Physiol. 2012 Feb 1;302(3):C615-27. doi: 10.1152/ajpcell.00193.2011. Epub 2011 Nov 2.


Molecular basis for benzodiazepine agonist action at the type 1 cholecystokinin receptor.

Harikumar KG, Cawston EE, Lam PC, Patil A, Orry A, Henke BR, Abagyan R, Christopoulos A, Sexton PM, Miller LJ.

J Biol Chem. 2013 Jul 19;288(29):21082-95. doi: 10.1074/jbc.M113.480715. Epub 2013 Jun 10.


Refinement of the conformation of a critical region of charge-charge interaction between cholecystokinin and its receptor.

Ding XQ, Pinon DI, Furse KE, Lybrand TP, Miller LJ.

Mol Pharmacol. 2002 May;61(5):1041-52.


Modeled structure of a G-protein-coupled receptor: the cholecystokinin-1 receptor.

Archer-Lahlou E, Tikhonova I, Escrieut C, Dufresne M, Seva C, Pradayrol L, Moroder L, Maigret B, Fourmy D.

J Med Chem. 2005 Jan 13;48(1):180-91.


Direct demonstration of unique mode of natural peptide binding to the type 2 cholecystokinin receptor using photoaffinity labeling.

Dong M, Miller LJ.

Peptides. 2013 Aug;46:143-9. doi: 10.1016/j.peptides.2013.06.007. Epub 2013 Jun 14.


A type 1 cholecystokinin receptor mutant that mimics the dysfunction observed for wild type receptor in a high cholesterol environment.

Desai AJ, Harikumar KG, Miller LJ.

J Biol Chem. 2014 Jun 27;289(26):18314-26. doi: 10.1074/jbc.M114.570200. Epub 2014 May 13.


Differential spatial approximation between cholecystokinin residue 30 and receptor residues in active and inactive conformations.

Dong M, Hadac EM, Pinon DI, Miller LJ.

Mol Pharmacol. 2005 Jun;67(6):1892-900. Epub 2005 Mar 17.

Supplemental Content

Support Center