Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 72

1.

Chlamydia pneumoniae infection results in generalized bone loss in mice.

Bailey L, Engström P, Nordström A, Bergström S, Waldenström A, Nordström P.

Microbes Infect. 2008 Aug-Sep;10(10-11):1175-81. doi: 10.1016/j.micinf.2008.06.010. Epub 2008 Jun 29.

PMID:
18640288
2.

Chlamydia pneumoniae and osteoporosis-associated bone loss: a new risk factor?

Di Pietro M, Schiavoni G, Sessa V, Pallotta F, Costanzo G, Sessa R.

Osteoporos Int. 2013 May;24(5):1677-82. doi: 10.1007/s00198-012-2217-1. Epub 2012 Nov 16.

PMID:
23160916
3.

Chlamydia pneumoniae and atherosclerosis.

Campbell LA, Kuo CC.

Semin Respir Infect. 2003 Mar;18(1):48-54. Review.

PMID:
12652454
4.

Induction of proinflammatory cytokines in human osteoblastic cells by Chlamydia pneumoniae.

Rizzo A, Di Domenico M, Carratelli CR, Mazzola N, Paolillo R.

Cytokine. 2011 Nov;56(2):450-7. doi: 10.1016/j.cyto.2011.06.027. Epub 2011 Jul 30.

PMID:
21803599
5.

Tumor necrosis factor alpha plays a role in the acceleration of atherosclerosis by Chlamydia pneumoniae in mice.

Campbell LA, Nosaka T, Rosenfeld ME, Yaraei K, Kuo CC.

Infect Immun. 2005 May;73(5):3164-5.

6.

Age alterations in extent and severity of experimental intranasal infection with Chlamydophila pneumoniae in BALB/c mice.

Little CS, Bowe A, Lin R, Litsky J, Fogel RM, Balin BJ, Fresa-Dillon KL.

Infect Immun. 2005 Mar;73(3):1723-34.

7.

Divergent modulation of Chlamydia pneumoniae infection cycle in human monocytic and endothelial cells by iron, tryptophan availability and interferon gamma.

Bellmann-Weiler R, Martinz V, Kurz K, Engl S, Feistritzer C, Fuchs D, Rupp J, Paldanius M, Weiss G.

Immunobiology. 2010 Sep-Oct;215(9-10):842-8. doi: 10.1016/j.imbio.2010.05.021. Epub 2010 Jun 4.

PMID:
20646782
8.

Acute Chlamydia pneumoniae reinfection accelerates the development of insulin resistance and diabetes in obese C57BL/6 mice.

Wang C, Gao D, Kaltenboeck B.

J Infect Dis. 2009 Jul 15;200(2):279-87. doi: 10.1086/599796.

PMID:
19508161
9.

Targeting of the osteoclastogenic RANKL-RANK axis prevents osteoporotic bone loss and soft tissue calcification in coxsackievirus B3-infected mice.

Lee K, Kim H, Park HS, Kim KJ, Song H, Shin HI, Kim HS, Seo D, Kook H, Ko JH, Jeong D.

J Immunol. 2013 Feb 15;190(4):1623-30. doi: 10.4049/jimmunol.1201479. Epub 2013 Jan 9.

10.

MyD88 is pivotal for the early inflammatory response and subsequent bacterial clearance and survival in a mouse model of Chlamydia pneumoniae pneumonia.

Naiki Y, Michelsen KS, Schröder NW, Alsabeh R, Slepenkin A, Zhang W, Chen S, Wei B, Bulut Y, Wong MH, Peterson EM, Arditi M.

J Biol Chem. 2005 Aug 12;280(32):29242-9. Epub 2005 Jun 17.

11.

Effect of azithromycin on murine arteriosclerosis exacerbated by Chlamydia pneumoniae.

Rothstein NM, Quinn TC, Madico G, Gaydos CA, Lowenstein CJ.

J Infect Dis. 2001 Jan 15;183(2):232-238. Epub 2000 Dec 13.

PMID:
11120929
12.

Inflammatory bone loss in experimental periodontitis induced by Aggregatibacter actinomycetemcomitans in interleukin-1 receptor antagonist knockout mice.

Izawa A, Ishihara Y, Mizutani H, Kobayashi S, Goto H, Okabe E, Takeda H, Ozawa Y, Kamiya Y, Sugita Y, Kubo K, Kamei H, Kikuchi T, Mitani A, Hayashi J, Nishihara T, Maeda H, Noguchi T.

Infect Immun. 2014 May;82(5):1904-13. doi: 10.1128/IAI.01618-13. Epub 2014 Feb 24.

13.

The acute phase reactant response to respiratory infection with Chlamydia pneumoniae: implications for the pathogenesis of atherosclerosis.

Campbell LA, Yaraei K, Van Lenten B, Chait A, Blessing E, Kuo CC, Nosaka T, Ricks J, Rosenfeld ME.

Microbes Infect. 2010 Aug;12(8-9):598-606. doi: 10.1016/j.micinf.2010.04.001. Epub 2010 Apr 22.

14.

Inflammation and atrial fibrillation: is Chlamydia pneumoniae a candidate pathogen of atrial fibrillation?

Tang RB, Dong JZ, Liu XP, Ma CS.

Med Hypotheses. 2006;67(3):462-6. Epub 2006 Jun 21.

PMID:
16793213
15.

Choroidal neovascularization enhanced by Chlamydia pneumoniae via Toll-like receptor 2 in the retinal pigment epithelium.

Fujimoto T, Sonoda KH, Hijioka K, Sato K, Takeda A, Hasegawa E, Oshima Y, Ishibashi T.

Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4694-702. doi: 10.1167/iovs.09-4464. Epub 2010 Apr 14.

PMID:
20393111
16.

Chlamydophila pneumoniae induces a sustained airway hyperresponsiveness and inflammation in mice.

Blasi F, Aliberti S, Allegra L, Piatti G, Tarsia P, Ossewaarde JM, Verweij V, Nijkamp FP, Folkerts G.

Respir Res. 2007 Nov 19;8:83.

17.
18.

Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-α antibodies.

Tyagi AM, Mansoori MN, Srivastava K, Khan MP, Kureel J, Dixit M, Shukla P, Trivedi R, Chattopadhyay N, Singh D.

J Bone Miner Res. 2014 Sep;29(9):1981-92. doi: 10.1002/jbmr.2228.

19.

Effect of PEX, a noncatalytic metalloproteinase fragment with integrin-binding activity, on experimental Chlamydophila pneumoniae infection.

Caronzolo D, Lucini V, Pannacci M, Grosso S, Kieffer N, Bello L, Bikfalvi A, Scaglione F.

Antimicrob Agents Chemother. 2006 Oct;50(10):3277-82.

20.

Roles of interleukin-12 and gamma interferon in murine Chlamydia pneumoniae infection.

Geng Y, Berencsi K, Gyulai Z, Valyi-Nagy T, Gonczol E, Trinchieri G.

Infect Immun. 2000 Apr;68(4):2245-53.

Supplemental Content

Support Center