Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Inhibition of the norepinephrine transporter improves behavioral flexibility in rats and monkeys.

Seu E, Lang A, Rivera RJ, Jentsch JD.

Psychopharmacology (Berl). 2009 Jan;202(1-3):505-19. doi: 10.1007/s00213-008-1250-4. Epub 2008 Jul 7.

2.

Age-related changes in prefrontal norepinephrine transporter density: The basis for improved cognitive flexibility after low doses of atomoxetine in adolescent rats.

Bradshaw SE, Agster KL, Waterhouse BD, McGaughy JA.

Brain Res. 2016 Jun 15;1641(Pt B):245-57. doi: 10.1016/j.brainres.2016.01.001. Epub 2016 Jan 14.

3.

Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test.

Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z, Day M.

Prog Neuropsychopharmacol Biol Psychiatry. 2008 Jan 1;32(1):34-41. Epub 2007 Jun 27.

PMID:
17714843
4.

Sub-optimal performance in the 5-choice serial reaction time task in rats was sensitive to methylphenidate, atomoxetine and d-amphetamine, but unaffected by the COMT inhibitor tolcapone.

Paterson NE, Ricciardi J, Wetzler C, Hanania T.

Neurosci Res. 2011 Jan;69(1):41-50. doi: 10.1016/j.neures.2010.10.001. Epub 2010 Oct 8.

PMID:
20934466
5.

Effect of acute and repeated treatment with desipramine or methylphenidate on serial reversal learning in rats.

Seu E, Jentsch JD.

Neuropharmacology. 2009 Dec;57(7-8):665-72. doi: 10.1016/j.neuropharm.2009.08.007. Epub 2009 Aug 22.

6.

Performance on a strategy set shifting task during adolescence in a genetic model of attention deficit/hyperactivity disorder: methylphenidate vs. atomoxetine treatments.

Harvey RC, Jordan CJ, Tassin DH, Moody KR, Dwoskin LP, Kantak KM.

Behav Brain Res. 2013 May 1;244:38-47. doi: 10.1016/j.bbr.2013.01.027. Epub 2013 Jan 31.

7.

MDMA-induced impairment in primates: antagonism by a selective norepinephrine or serotonin, but not by a dopamine/norepinephrine transport inhibitor.

Verrico CD, Lynch L, Fahey MA, Fryer AK, Miller GM, Madras BK.

J Psychopharmacol. 2008 Mar;22(2):187-202. doi: 10.1177/0269881107083639. Epub 2008 Feb 28.

PMID:
18308800
8.

Effects of atomoxetine and methylphenidate on performance of a lateralized reaction time task in rats.

Jentsch JD, Aarde SM, Seu E.

Psychopharmacology (Berl). 2009 Jan;202(1-3):497-504. doi: 10.1007/s00213-008-1181-0. Epub 2008 Jun 6.

PMID:
18535818
9.

Atomoxetine reverses attentional deficits produced by noradrenergic deafferentation of medial prefrontal cortex.

Newman LA, Darling J, McGaughy J.

Psychopharmacology (Berl). 2008 Sep;200(1):39-50. doi: 10.1007/s00213-008-1097-8. Epub 2008 Jun 22.

PMID:
18568443
10.

Impulsive action and impulsive choice are mediated by distinct neuropharmacological substrates in rat.

Paterson NE, Wetzler C, Hackett A, Hanania T.

Int J Neuropsychopharmacol. 2012 Nov;15(10):1473-87. doi: 10.1017/S1461145711001635. Epub 2011 Nov 18.

PMID:
22094071
11.

Prepuberal subchronic methylphenidate and atomoxetine induce different long-term effects on adult behaviour and forebrain dopamine, norepinephrine and serotonin in Naples high-excitability rats.

Ruocco LA, Carnevale UA, Treno C, Sadile AG, Melisi D, Arra C, Ibba M, Schirru C, Carboni E.

Behav Brain Res. 2010 Jun 26;210(1):99-106. doi: 10.1016/j.bbr.2010.02.020. Epub 2010 Feb 13.

PMID:
20156489
12.

Inhibitory control deficits in rats with ventral hippocampal lesions.

Abela AR, Dougherty SD, Fagen ED, Hill CJ, Chudasama Y.

Cereb Cortex. 2013 Jun;23(6):1396-409. doi: 10.1093/cercor/bhs121. Epub 2012 May 21.

PMID:
22615141
13.

Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice.

Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T.

J Neurochem. 2010 Jul;114(1):259-70. doi: 10.1111/j.1471-4159.2010.06750.x. Epub 2010 Apr 16.

14.

Increased dopamine transporter function as a mechanism for dopamine hypoactivity in the adult infralimbic medial prefrontal cortex following adolescent social stress.

Novick AM, Forster GL, Hassell JE, Davies DR, Scholl JL, Renner KJ, Watt MJ.

Neuropharmacology. 2015 Oct;97:194-200. doi: 10.1016/j.neuropharm.2015.05.032. Epub 2015 Jun 6.

15.

Norepinephrine transporter blockade can normalize the prepulse inhibition deficits found in dopamine transporter knockout mice.

Yamashita M, Fukushima S, Shen HW, Hall FS, Uhl GR, Numachi Y, Kobayashi H, Sora I.

Neuropsychopharmacology. 2006 Oct;31(10):2132-9. Epub 2006 Jan 11.

16.

Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat.

Mazei MS, Pluto CP, Kirkbride B, Pehek EA.

Brain Res. 2002 May 17;936(1-2):58-67.

PMID:
11988230
17.

Chronic atomoxetine treatment during adolescence decreases impulsive choice, but not impulsive action, in adult rats and alters markers of synaptic plasticity in the orbitofrontal cortex.

Sun H, Cocker PJ, Zeeb FD, Winstanley CA.

Psychopharmacology (Berl). 2012 Jan;219(2):285-301. doi: 10.1007/s00213-011-2419-9. Epub 2011 Aug 2.

PMID:
21809008
18.

Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats.

Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW.

Psychopharmacology (Berl). 2009 Aug;205(2):273-83. doi: 10.1007/s00213-009-1537-0. Epub 2009 Apr 30.

19.

Procholinergic and memory enhancing properties of the selective norepinephrine uptake inhibitor atomoxetine.

Tzavara ET, Bymaster FP, Overshiner CD, Davis RJ, Perry KW, Wolff M, McKinzie DL, Witkin JM, Nomikos GG.

Mol Psychiatry. 2006 Feb;11(2):187-95.

PMID:
16231039
20.

Methylphenidate disrupts social play behavior in adolescent rats.

Vanderschuren LJ, Trezza V, Griffioen-Roose S, Schiepers OJ, Van Leeuwen N, De Vries TJ, Schoffelmeer AN.

Neuropsychopharmacology. 2008 Nov;33(12):2946-56. doi: 10.1038/npp.2008.10. Epub 2008 Feb 27. Erratum in: Neuropsychopharmacology. 2008 Nov;33(12):3021.

Supplemental Content

Support Center