Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.
2.

Metabolic imaging using two-photon excited NADH intensity and fluorescence lifetime imaging.

Vergen J, Hecht C, Zholudeva LV, Marquardt MM, Hallworth R, Nichols MG.

Microsc Microanal. 2012 Aug;18(4):761-70. doi: 10.1017/S1431927612000529. Epub 2012 Jul 26.

3.

Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH.

Bird DK, Yan L, Vrotsos KM, Eliceiri KW, Vaughan EM, Keely PJ, White JG, Ramanujam N.

Cancer Res. 2005 Oct 1;65(19):8766-73.

4.

In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia.

Skala MC, Riching KM, Bird DK, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, Keely PJ, Ramanujam N.

J Biomed Opt. 2007 Mar-Apr;12(2):024014.

5.

Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response.

Baraghis E, Devor A, Fang Q, Srinivasan VJ, Wu W, Lesage F, Ayata C, Kasischke KA, Boas DA, Sakadzić S.

J Biomed Opt. 2011 Oct;16(10):106003. doi: 10.1117/1.3633339.

6.

Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and exogenous fluorophores in breast cancer.

Provenzano PP, Rueden CT, Trier SM, Yan L, Ponik SM, Inman DR, Keely PJ, Eliceiri KW.

J Biomed Opt. 2008 May-Jun;13(3):031220. doi: 10.1117/1.2940365.

PMID:
18601544
7.

Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level.

Yu Q, Heikal AA.

J Photochem Photobiol B. 2009 Apr 2;95(1):46-57. doi: 10.1016/j.jphotobiol.2008.12.010. Epub 2008 Dec 25.

8.

Multiphoton excitation of autofluorescence for microscopy of glioma tissue.

Leppert J, Krajewski J, Kantelhardt SR, Schlaffer S, Petkus N, Reusche E, Hüttmann G, Giese A.

Neurosurgery. 2006 Apr;58(4):759-67; discussion 759-67.

PMID:
16575340
9.

Multiphoton fluorescence lifetime imaging microscopy reveals free-to-bound NADH ratio changes associated with metabolic inhibition.

Drozdowicz-Tomsia K, Anwer AG, Cahill MA, Madlum KN, Maki AM, Baker MS, Goldys EM.

J Biomed Opt. 2014 Aug;19(8):086016. doi: 10.1117/1.JBO.19.8.086016.

PMID:
25140884
10.

Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo.

Thorling CA, Dancik Y, Hupple CW, Medley G, Liu X, Zvyagin AV, Robertson TA, Burczynski FJ, Roberts MS.

J Biomed Opt. 2011 Aug;16(8):086013. doi: 10.1117/1.3614473.

PMID:
21895325
11.

Determination of hair cell metabolic state in isolated cochlear preparations by two-photon microscopy.

Tiede LM, Rocha-Sanchez SM, Hallworth R, Nichols MG, Beisel K.

J Biomed Opt. 2007 Mar-Apr;12(2):021004.

12.

Fluorescence lifetime imaging of free and protein-bound NADH.

Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML.

Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1271-5.

13.

Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy.

Benati E, Bellini V, Borsari S, Dunsby C, Ferrari C, French P, Guanti M, Guardoli D, Koenig K, Pellacani G, Ponti G, Schianchi S, Talbot C, Seidenari S.

Skin Res Technol. 2011 Aug;17(3):295-303. doi: 10.1111/j.1600-0846.2011.00496.x. Epub 2011 Apr 25.

PMID:
21518012
14.

Real-time analysis of metabolic activity within Lactobacillus acidophilus by phasor fluorescence lifetime imaging microscopy of NADH.

Torno K, Wright BK, Jones MR, Digman MA, Gratton E, Phillips M.

Curr Microbiol. 2013 Apr;66(4):365-7. doi: 10.1007/s00284-012-0285-2. Epub 2012 Dec 12.

15.

In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

Kantelhardt SR, Kalasauskas D, König K, Kim E, Weinigel M, Uchugonova A, Giese A.

J Neurooncol. 2016 May;127(3):473-82. doi: 10.1007/s11060-016-2062-8. Epub 2016 Jan 30.

PMID:
26830089
16.

A method to unmix multiple fluorophores in microscopy images with minimal a priori information.

Schlachter S, Schwedler S, Esposito A, Kaminski Schierle GS, Moggridge GD, Kaminski CF.

Opt Express. 2009 Dec 7;17(25):22747-60. doi: 10.1364/OE.17.022747.

PMID:
20052200
17.

In-depth fluorescence lifetime imaging analysis revealing SNAP25A-Rabphilin 3A interactions.

Lee JD, Huang PC, Lin YC, Kao LS, Huang CC, Kao FJ, Lin CC, Yang DM.

Microsc Microanal. 2008 Dec;14(6):507-18. doi: 10.1017/S1431927608080628.

PMID:
18986604
18.

In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin.

Balu M, Mazhar A, Hayakawa CK, Mittal R, Krasieva TB, König K, Venugopalan V, Tromberg BJ.

Biophys J. 2013 Jan 8;104(1):258-67. doi: 10.1016/j.bpj.2012.11.3809. Epub 2013 Jan 8.

19.

Diffusion of nerve growth factor in rat striatum as determined by multiphoton microscopy.

Stroh M, Zipfel WR, Williams RM, Webb WW, Saltzman WM.

Biophys J. 2003 Jul;85(1):581-8.

20.

Detection of microregional hypoxia in mouse cerebral cortex by two-photon imaging of endogenous NADH fluorescence.

Polesskaya O, Sun A, Salahura G, Silva JN, Dewhurst S, Kasischke K.

J Vis Exp. 2012 Feb 21;(60). pii: 3466. doi: 10.3791/3466.

Supplemental Content

Support Center