Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Multifrequency optical invisibility cloak with layered plasmonic shells.

Alù A, Engheta N.

Phys Rev Lett. 2008 Mar 21;100(11):113901. Epub 2008 Mar 18.

PMID:
18517786
2.

Electrically controlled multifrequency ferroelectric cloak.

Li P, Liu Y, Meng Y.

Opt Express. 2010 Jun 7;18(12):12646-52. doi: 10.1364/OE.18.012646.

PMID:
20588391
3.

Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell.

Lai Y, Chen H, Zhang ZQ, Chan CT.

Phys Rev Lett. 2009 Mar 6;102(9):093901. Epub 2009 Mar 2.

PMID:
19392518
4.

Homogeneous optical cloak constructed with uniform layered structures.

Zhang J, Liu L, Luo Y, Zhang S, Mortensen NA.

Opt Express. 2011 Apr 25;19(9):8625-31. doi: 10.1364/OE.19.008625.

PMID:
21643114
5.

Simplified ground plane invisibility cloak by multilayer dielectrics.

Xu X, Feng Y, Yu Z, Jiang T, Zhao J.

Opt Express. 2010 Nov 22;18(24):24477-85. doi: 10.1364/OE.18.024477.

PMID:
21164794
6.

Electromagnetic forces on a discrete spherical invisibility cloak under time-harmonic illumination.

Chaumet PC, Rahmani A, Zolla F, Nicolet A.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056602. Epub 2012 May 8.

PMID:
23004890
7.

Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles.

Monti A, Bilotti F, Toscano A.

Opt Lett. 2011 Dec 1;36(23):4479-81. doi: 10.1364/OL.36.004479.

PMID:
22139215
8.
9.

The design and simulated performance of a coated nano-particle laser.

Gordon JA, Ziolkowski RW.

Opt Express. 2007 Mar 5;15(5):2622-53.

PMID:
19532501
10.

Switching from visibility to invisibility via Fano resonances: theory and experiment.

Rybin MV, Filonov DS, Belov PA, Kivshar YS, Limonov MF.

Sci Rep. 2015 Mar 5;5:8774. doi: 10.1038/srep08774.

11.

Free-space carpet cloak using transformation optics and graphene.

Zhang R, Lin X, Shen L, Wang Z, Zheng B, Lin S, Chen H.

Opt Lett. 2014 Dec 1;39(23):6739-42. doi: 10.1364/OL.39.006739.

PMID:
25490666
12.

Effects of size and frequency dispersion in plasmonic cloaking.

Alù A, Engheta N.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):045602. Epub 2008 Oct 27.

PMID:
18999485
13.

A near-perfect invisibility cloak constructed with homogeneous materials.

Li W, Guan J, Sun Z, Wang W, Zhang Q.

Opt Express. 2009 Dec 21;17(26):23410-6. doi: 10.1364/OE.17.023410.

PMID:
20052048
14.
15.

Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics.

Ghadarghadr S, Hao Z, Mosallaei H.

Opt Express. 2009 Oct 12;17(21):18556-70. doi: 10.1364/OE.17.018556.

PMID:
20372586
16.

Three-dimensional broadband ground-plane cloak made of metamaterials.

Ma HF, Cui TJ.

Nat Commun. 2010 Jun 1;1:21. doi: 10.1038/ncomms1023.

17.

Metamaterial electromagnetic cloak at microwave frequencies.

Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR.

Science. 2006 Nov 10;314(5801):977-80. Epub 2006 Oct 19.

18.

Layered plasmonic cloaks to tailor the optical scattering at the nanoscale.

Monticone F, Argyropoulos C, Alù A.

Sci Rep. 2012;2:912. doi: 10.1038/srep00912. Epub 2012 Dec 3.

19.

Thermal invisibility based on scattering cancellation and mantle cloaking.

Farhat M, Chen PY, Bagci H, Amra C, Guenneau S, Alù A.

Sci Rep. 2015 Apr 30;5:9876. doi: 10.1038/srep09876. Erratum in: Sci Rep. 2016;6:19321.

20.

Tuning plasmonic cloaks with an external magnetic field.

Kort-Kamp WJ, Rosa FS, Pinheiro FA, Farina C.

Phys Rev Lett. 2013 Nov 22;111(21):215504. Epub 2013 Nov 21.

PMID:
24313504
Items per page

Supplemental Content

Write to the Help Desk