Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 143

1.

DNA apurinic-apyrimidinic site binding and excision by endonuclease IV.

Garcin ED, Hosfield DJ, Desai SA, Haas BJ, Björas M, Cunningham RP, Tainer JA.

Nat Struct Mol Biol. 2008 May;15(5):515-22. doi: 10.1038/nsmb.1414. Epub 2008 Apr 13.

PMID:
18408731
2.
3.
4.

Modulation of the 3'-->5'-exonuclease activity of human apurinic endonuclease (Ape1) by its 5'-incised Abasic DNA product.

Wong D, DeMott MS, Demple B.

J Biol Chem. 2003 Sep 19;278(38):36242-9. Epub 2003 Jul 10.

5.

Mapping the protein-DNA interface and the metal-binding site of the major human apurinic/apyrimidinic endonuclease.

Nguyen LH, Barsky D, Erzberger JP, Wilson DM 3rd.

J Mol Biol. 2000 May 5;298(3):447-59.

PMID:
10772862
6.

Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes.

Tsutakawa SE, Shin DS, Mol CD, Izumi T, Arvai AS, Mantha AK, Szczesny B, Ivanov IN, Hosfield DJ, Maiti B, Pique ME, Frankel KA, Hitomi K, Cunningham RP, Mitra S, Tainer JA.

J Biol Chem. 2013 Mar 22;288(12):8445-55. doi: 10.1074/jbc.M112.422774. Epub 2013 Jan 25.

7.

Coupling of the nucleotide incision and 3'-->5' exonuclease activities in Escherichia coli endonuclease IV: Structural and genetic evidences.

Golan G, Ishchenko AA, Khassenov B, Shoham G, Saparbaev MK.

Mutat Res. 2010 Mar 1;685(1-2):70-9. doi: 10.1016/j.mrfmmm.2009.08.017. Epub 2009 Sep 12.

PMID:
19751747
8.

Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism.

Beernink PT, Segelke BW, Hadi MZ, Erzberger JP, Wilson DM 3rd, Rupp B.

J Mol Biol. 2001 Apr 6;307(4):1023-34.

PMID:
11286553
9.

DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites.

Horton NC, Perona JJ.

Biochemistry. 2004 Jun 8;43(22):6841-57.

PMID:
15170321
10.

Uncoupling of the base excision and nucleotide incision repair pathways reveals their respective biological roles.

Ishchenko AA, Deprez E, Maksimenko A, Brochon JC, Tauc P, Saparbaev MK.

Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2564-9. Epub 2006 Feb 10.

11.

Repair of oxidized abasic sites by exonuclease III, endonuclease IV, and endonuclease III.

Greenberg MM, Weledji YN, Kim J, Bales BC.

Biochemistry. 2004 Jun 29;43(25):8178-83.

PMID:
15209514
12.
15.

Determinants in nuclease specificity of Ape1 and Ape2, human homologues of Escherichia coli exonuclease III.

Hadi MZ, Ginalski K, Nguyen LH, Wilson DM 3rd.

J Mol Biol. 2002 Feb 22;316(3):853-66.

PMID:
11866537
16.

Interactions of Escherichia coli endonuclease IV and exonuclease III with abasic sites in DNA.

Takeuchi M, Lillis R, Demple B, Takeshita M.

J Biol Chem. 1994 Aug 26;269(34):21907-14.

18.

Crystal structure of the DNA repair enzyme ultraviolet damage endonuclease.

Paspaleva K, Thomassen E, Pannu NS, Iwai S, Moolenaar GF, Goosen N, Abrahams JP.

Structure. 2007 Oct;15(10):1316-24.

19.

Escherichia coli apurinic-apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates.

Pope MA, Porello SL, David SS.

J Biol Chem. 2002 Jun 21;277(25):22605-15. Epub 2002 Apr 17.

20.

DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected].

Mol CD, Izumi T, Mitra S, Tainer JA.

Nature. 2000 Jan 27;403(6768):451-6. Erratum in: Nature 2000 Mar 30;404(6777.

PMID:
10667800

Supplemental Content

Support Center