Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 76

1.

Molecular assembly for high-performance bivalent nucleic acid inhibitor.

Kim Y, Cao Z, Tan W.

Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5664-9. doi: 10.1073/pnas.0711803105. Epub 2008 Apr 8.

2.

Selection is more intelligent than design: improving the affinity of a bivalent ligand through directed evolution.

Ahmad KM, Xiao Y, Soh HT.

Nucleic Acids Res. 2012 Dec;40(22):11777-83. doi: 10.1093/nar/gks899. Epub 2012 Oct 4.

3.

Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer.

Musumeci D, Montesarchio D.

Pharmacol Ther. 2012 Nov;136(2):202-15. doi: 10.1016/j.pharmthera.2012.07.011. Epub 2012 Jul 28. Review.

PMID:
22850531
4.

Investigation of the interaction between a bivalent aptamer and thrombin by AFM.

Ge L, Jin G, Fang X.

Langmuir. 2012 Jan 10;28(1):707-13. doi: 10.1021/la203954x. Epub 2011 Dec 2.

PMID:
22103891
5.

Targeting Two Coagulation Cascade Proteases with a Bivalent Aptamer Yields a Potent and Antidote-Controllable Anticoagulant.

Soule EE, Bompiani KM, Woodruff RS, Sullenger BA.

Nucleic Acid Ther. 2016 Feb;26(1):1-9. doi: 10.1089/nat.2015.0565. Epub 2015 Nov 19.

6.

Antidote control of aptamer therapeutics: the road to a safer class of drug agents.

Bompiani KM, Woodruff RS, Becker RC, Nimjee SM, Sullenger BA.

Curr Pharm Biotechnol. 2012 Aug;13(10):1924-34. Review.

PMID:
22352726
7.

Directly investigating the interaction between aptamers and thrombin by atomic force microscopy.

Jiao F, Fan H, Yang G, Zhang F, He P.

J Mol Recognit. 2013 Dec;26(12):672-8. doi: 10.1002/jmr.2312.

PMID:
24277612
8.

Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures.

Rangnekar A, Zhang AM, Li SS, Bompiani KM, Hansen MN, Gothelf KV, Sullenger BA, LaBean TH.

Nanomedicine. 2012 Jul;8(5):673-81. doi: 10.1016/j.nano.2011.08.011. Epub 2011 Sep 1.

PMID:
21889476
9.

A high affinity, antidote-controllable prothrombin and thrombin-binding RNA aptamer inhibits thrombin generation and thrombin activity.

Bompiani KM, Monroe DM, Church FC, Sullenger BA.

J Thromb Haemost. 2012 May;10(5):870-80. doi: 10.1111/j.1538-7836.2012.04679.x.

10.

Design of Potent and Controllable Anticoagulants Using DNA Aptamers and Nanostructures.

Rangnekar A, Nash JA, Goodfred B, Yingling YG, LaBean TH.

Molecules. 2016 Feb 6;21(2). pii: E202. doi: 10.3390/molecules21020202.

11.

Bivalent ligands with long nanometer-scale flexible linkers.

Tian L, Heyduk T.

Biochemistry. 2009 Jan 20;48(2):264-75. doi: 10.1021/bi801630b.

PMID:
19113836
12.

Nucleic acid aptamers as high affinity ligands in biotechnology and biosensorics.

Šmuc T, Ahn IY, Ulrich H.

J Pharm Biomed Anal. 2013 Jul-Aug;81-82:210-7. doi: 10.1016/j.jpba.2013.03.014. Epub 2013 Mar 28. Review.

PMID:
23666257
13.
14.

G-quadruplex DNA aptamers and their ligands: structure, function and application.

Tucker WO, Shum KT, Tanner JA.

Curr Pharm Des. 2012;18(14):2014-26. Review.

PMID:
22376117
15.

Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin.

Hianik T, Ostatná V, Sonlajtnerova M, Grman I.

Bioelectrochemistry. 2007 Jan;70(1):127-33. Epub 2006 Apr 7.

PMID:
16725379
16.

In vitro selection of protein-binding DNA aptamers as ligands for biosensing applications.

Navani NK, Mok WK, Yingfu L.

Methods Mol Biol. 2009;504:399-415. doi: 10.1007/978-1-60327-569-9_22.

PMID:
19159108
17.

A family of DNA aptamers with varied duplex region length that forms complexes with thrombin and prothrombin.

Spiridonova VA, Barinova KV, Glinkina KA, Melnichuk AV, Gainutdynov AA, Safenkova IV, Dzantiev BB.

FEBS Lett. 2015 Jul 22;589(16):2043-9. doi: 10.1016/j.febslet.2015.06.020. Epub 2015 Jul 2.

18.

The selection of DNA aptamers for two different epitopes of thrombin was not due to different partitioning methods.

Wilson R, Cossins A, Nicolau DV, Missailidis S.

Nucleic Acid Ther. 2013 Feb;23(1):88-92. doi: 10.1089/nat.2012.0386. Epub 2012 Dec 5.

19.

Building a Molecular Trap for a Serine Protease from Aptamer and Peptide Modules.

Dupont DM, Bjerregaard N, Verpaalen B, Andreasen PA, Jensen JK.

Bioconjug Chem. 2016 Apr 20;27(4):918-26. doi: 10.1021/acs.bioconjchem.6b00007. Epub 2016 Mar 11.

PMID:
26926041
20.

Streptavidin binding bifunctional aptamers and their interaction with low molecular weight ligands.

Le TT, Scott S, Cass AE.

Anal Chim Acta. 2013 Jan 25;761:143-8. doi: 10.1016/j.aca.2012.11.016. Epub 2012 Dec 5.

PMID:
23312325

Supplemental Content

Support Center