Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1.

Selmecki A, Gerami-Nejad M, Paulson C, Forche A, Berman J.

Mol Microbiol. 2008 May;68(3):624-41. doi: 10.1111/j.1365-2958.2008.06176.x. Epub 2008 Mar 20.

2.

Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates.

Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME, d'Enfert C, Berman J, Sanglard D.

Eukaryot Cell. 2007 Oct;6(10):1889-904. Epub 2007 Aug 10.

3.

Aneuploidy and isochromosome formation in drug-resistant Candida albicans.

Selmecki A, Forche A, Berman J.

Science. 2006 Jul 21;313(5785):367-70.

4.

Genetic dissection of azole resistance mechanisms in Candida albicans and their validation in a mouse model of disseminated infection.

MacCallum DM, Coste A, Ischer F, Jacobsen MD, Odds FC, Sanglard D.

Antimicrob Agents Chemother. 2010 Apr;54(4):1476-83. doi: 10.1128/AAC.01645-09. Epub 2010 Jan 19.

5.

An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans.

Heilmann CJ, Schneider S, Barker KS, Rogers PD, Morschhäuser J.

Antimicrob Agents Chemother. 2010 Jan;54(1):353-9. doi: 10.1128/AAC.01102-09. Epub 2009 Nov 2.

6.

Up-regulation of ERG11 gene among fluconazole-resistant Candida albicans generated in vitro: is there any clinical implication?

Ribeiro MA, Paula CR.

Diagn Microbiol Infect Dis. 2007 Jan;57(1):71-5. Epub 2006 Jul 11.

PMID:
16839736
7.

Molecular mechanisms associated with Fluconazole resistance in clinical Candida albicans isolates from India.

Mane A, Vidhate P, Kusro C, Waman V, Saxena V, Kulkarni-Kale U, Risbud A.

Mycoses. 2016 Feb;59(2):93-100. doi: 10.1111/myc.12439. Epub 2015 Dec 9.

PMID:
26648048
8.

Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing.

Wang H, Kong F, Sorrell TC, Wang B, McNicholas P, Pantarat N, Ellis D, Xiao M, Widmer F, Chen SC.

BMC Microbiol. 2009 Aug 14;9:167. doi: 10.1186/1471-2180-9-167.

9.

Molecular characterization of fluconazole resistance in a case of Candida albicans ocular infection.

Pancholi P, Park S, Perlin D, Kubin C, Della-Latta P.

J Clin Microbiol. 2004 Dec;42(12):5938-9.

10.

Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes TAC1, MRR1 and UPC2 in a set of fluconazole-resistant clinical isolates of Candida albicans.

Morio F, Pagniez F, Besse M, Gay-andrieu F, Miegeville M, Le Pape P.

Int J Antimicrob Agents. 2013 Nov;42(5):410-5. doi: 10.1016/j.ijantimicag.2013.07.013. Epub 2013 Aug 29.

PMID:
24051054
11.

Induction of Candida albicans drug resistance genes by hybrid zinc cluster transcription factors.

Schneider S, Morschhäuser J.

Antimicrob Agents Chemother. 2015 Jan;59(1):558-69. doi: 10.1128/AAC.04448-14. Epub 2014 Nov 10.

12.

The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans.

Sasse C, Dunkel N, Schäfer T, Schneider S, Dierolf F, Ohlsen K, Morschhäuser J.

Mol Microbiol. 2012 Nov;86(3):539-56. doi: 10.1111/j.1365-2958.2012.08210.x. Epub 2012 Aug 28.

13.

ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates.

Holmes AR, Lin YH, Niimi K, Lamping E, Keniya M, Niimi M, Tanabe K, Monk BC, Cannon RD.

Antimicrob Agents Chemother. 2008 Nov;52(11):3851-62. doi: 10.1128/AAC.00463-08. Epub 2008 Aug 18.

14.

Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters.

Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J.

Antimicrob Agents Chemother. 1995 Nov;39(11):2378-86.

15.

Investigation of mutations in Erg11 gene of fluconazole resistant Candida albicans isolates from Turkish hospitals.

Manastır L, Ergon MC, Yücesoy M.

Mycoses. 2011 Mar;54(2):99-104. doi: 10.1111/j.1439-0507.2009.01766.x.

PMID:
19732347
16.

Nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates.

Strzelczyk JK, Slemp-Migiel A, Rother M, Gołąbek K, Wiczkowski A.

Acta Biochim Pol. 2013;60(4):547-52. Epub 2013 Dec 16.

17.

The transcription factor Ndt80 does not contribute to Mrr1-, Tac1-, and Upc2-mediated fluconazole resistance in Candida albicans.

Sasse C, Schillig R, Dierolf F, Weyler M, Schneider S, Mogavero S, Rogers PD, Morschhäuser J.

PLoS One. 2011;6(9):e25623. doi: 10.1371/journal.pone.0025623. Epub 2011 Sep 27.

18.

Heterogeneous mechanisms of azole resistance in Candida albicans clinical isolates from an HIV-infected patient on continuous fluconazole therapy for oropharyngeal candidosis.

Martínez M, López-Ribot JL, Kirkpatrick WR, Bachmann SP, Perea S, Ruesga MT, Patterson TF.

J Antimicrob Chemother. 2002 Mar;49(3):515-24.

PMID:
11864952
19.

Overexpression and mutation as a genetic mechanism of fluconazole resistance in Candida albicans isolated from human immunodeficiency virus patients in Indonesia.

Rosana Y, Yasmon A, Lestari DC.

J Med Microbiol. 2015 Sep;64(9):1046-52. doi: 10.1099/jmm.0.000123. Epub 2015 Jul 9.

PMID:
26297039
20.

Mechanisms of azole resistance in Candida albicans clinical isolates from Shanghai, China.

Liu JY, Shi C, Wang Y, Li WJ, Zhao Y, Xiang MJ.

Res Microbiol. 2015 Apr;166(3):153-61. doi: 10.1016/j.resmic.2015.02.009. Epub 2015 Mar 6.

PMID:
25748216

Supplemental Content

Support Center