Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Mechanism and inhibition of saFabI, the enoyl reductase from Staphylococcus aureus.

Xu H, Sullivan TJ, Sekiguchi J, Kirikae T, Ojima I, Stratton CF, Mao W, Rock FL, Alley MR, Johnson F, Walker SG, Tonge PJ.

Biochemistry. 2008 Apr 8;47(14):4228-36. doi: 10.1021/bi800023a. Epub 2008 Mar 13.

2.
3.

Rational optimization of drug-target residence time: insights from inhibitor binding to the Staphylococcus aureus FabI enzyme-product complex.

Chang A, Schiebel J, Yu W, Bommineni GR, Pan P, Baxter MV, Khanna A, Sotriffer CA, Kisker C, Tonge PJ.

Biochemistry. 2013 Jun 18;52(24):4217-28. doi: 10.1021/bi400413c. Epub 2013 Jun 6.

4.

Resistance to AFN-1252 arises from missense mutations in Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI).

Yao J, Maxwell JB, Rock CO.

J Biol Chem. 2013 Dec 20;288(51):36261-71. doi: 10.1074/jbc.M113.512905. Epub 2013 Nov 4.

5.

Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase.

Massengo-Tiassé RP, Cronan JE.

J Biol Chem. 2008 Jan 18;283(3):1308-16. Epub 2007 Nov 21.

6.

Staphylococcus aureus FabI: inhibition, substrate recognition, and potential implications for in vivo essentiality.

Schiebel J, Chang A, Lu H, Baxter MV, Tonge PJ, Kisker C.

Structure. 2012 May 9;20(5):802-13. doi: 10.1016/j.str.2012.03.013.

7.

Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the Yersinia pestis FabV Enoyl-ACP Reductase.

Neckles C, Pschibul A, Lai CT, Hirschbeck M, Kuper J, Davoodi S, Zou J, Liu N, Pan P, Shah S, Daryaee F, Bommineni GR, Lai C, Simmerling C, Kisker C, Tonge PJ.

Biochemistry. 2016 May 31;55(21):2992-3006. doi: 10.1021/acs.biochem.5b01301. Epub 2016 May 17.

8.

An ordered water channel in Staphylococcus aureus FabI: unraveling the mechanism of substrate recognition and reduction.

Schiebel J, Chang A, Merget B, Bommineni GR, Yu W, Spagnuolo LA, Baxter MV, Tareilus M, Tonge PJ, Kisker C, Sotriffer CA.

Biochemistry. 2015 Mar 17;54(10):1943-55. doi: 10.1021/bi5014358. Epub 2015 Mar 3.

9.

Mechanism and inhibition of the FabV enoyl-ACP reductase from Burkholderia mallei.

Lu H, Tonge PJ.

Biochemistry. 2010 Feb 16;49(6):1281-9. doi: 10.1021/bi902001a.

10.

Mechanism and inhibition of the FabI enoyl-ACP reductase from Burkholderia pseudomallei.

Liu N, Cummings JE, England K, Slayden RA, Tonge PJ.

J Antimicrob Chemother. 2011 Mar;66(3):564-73. doi: 10.1093/jac/dkq509. Epub 2011 Jan 22.

11.

Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway.

Lu H, Tonge PJ.

Acc Chem Res. 2008 Jan;41(1):11-20. doi: 10.1021/ar700156e. Review.

PMID:
18193820
12.

Exploring the interaction energies for the binding of hydroxydiphenyl ethers to enoyl-acyl carrier protein reductases.

Muralidharan J, Suguna K, Surolia A, Surolia N.

J Biomol Struct Dyn. 2003 Feb;20(4):589-94.

PMID:
12529157
13.

Discovery of 4-Pyridone derivatives as specific inhibitors of enoyl-acyl carrier protein reductase (FabI) with antibacterial activity against Staphylococcus aureus.

Takahata S, Iida M, Yoshida T, Kumura K, Kitagawa H, Hoshiko S.

J Antibiot (Tokyo). 2007 Feb;60(2):123-8.

PMID:
17420562
14.

Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase.

Zhu L, Lin J, Ma J, Cronan JE, Wang H.

Antimicrob Agents Chemother. 2010 Feb;54(2):689-98. doi: 10.1128/AAC.01152-09. Epub 2009 Nov 23.

15.

Rationalizing the Binding Kinetics for the Inhibition of the Burkholderia pseudomallei FabI1 Enoyl-ACP Reductase.

Neckles C, Eltschkner S, Cummings JE, Hirschbeck M, Daryaee F, Bommineni GR, Zhang Z, Spagnuolo L, Yu W, Davoodi S, Slayden RA, Kisker C, Tonge PJ.

Biochemistry. 2017 Apr 4;56(13):1865-1878. doi: 10.1021/acs.biochem.6b01048. Epub 2017 Mar 21.

PMID:
28225601
16.

Slow-onset inhibition of the FabI enoyl reductase from francisella tularensis: residence time and in vivo activity.

Lu H, England K, am Ende C, Truglio JJ, Luckner S, Reddy BG, Marlenee NL, Knudson SE, Knudson DL, Bowen RA, Kisker C, Slayden RA, Tonge PJ.

ACS Chem Biol. 2009 Mar 20;4(3):221-31. doi: 10.1021/cb800306y.

17.

Structural insights into Staphylococcus aureus enoyl-ACP reductase (FabI), in complex with NADP and triclosan.

Priyadarshi A, Kim EE, Hwang KY.

Proteins. 2010 Feb 1;78(2):480-6. doi: 10.1002/prot.22581. No abstract available.

PMID:
19768684
18.

Radiosynthesis and biological evaluation of a novel enoyl-ACP reductase inhibitor for Staphylococcus aureus.

Wang H, Lu Y, Liu L, Kim SW, Hooker JM, Fowler JS, Tonge PJ.

Eur J Med Chem. 2014 Dec 17;88:66-73. doi: 10.1016/j.ejmech.2014.09.008. Epub 2014 Sep 6.

19.

Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

González-Thuillier I, Venegas-Calerón M, Garcés R, von Wettstein-Knowles P, Martínez-Force E.

Planta. 2015 Jan;241(1):43-56. doi: 10.1007/s00425-014-2162-7. Epub 2014 Sep 11.

PMID:
25204631
20.

Effect of substrate binding loop mutations on the structure, kinetics, and inhibition of enoyl acyl carrier protein reductase from Plasmodium falciparum.

Maity K, Banerjee T, Prabakaran N, Surolia N, Surolia A, Suguna K.

IUBMB Life. 2011 Jan;63(1):30-41. doi: 10.1002/iub.412. Epub 2011 Jan 13.

Supplemental Content

Support Center