Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.
2.

Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives.

Müller M, Squier J, Wolleschensky R, Simon U, Brakenhoff GJ.

J Microsc. 1998 Aug;191(2):141-150.

3.

Origin and effect of high-order dispersion in ultrashort pulse multiphoton microscopy in the 10 fs regime.

Wang W, Liu Y, Xi P, Ren Q.

Appl Opt. 2010 Dec 10;49(35):6703-9. doi: 10.1364/AO.49.006703.

PMID:
21151226
4.

Aberration effects on femtosecond pulses generated by nonideal achromatic doublets.

Estrada-Silva FC, Garduño-Mejía J, Rosete-Aguilar M, Román-Moreno CJ, Ortega-Martínez R.

Appl Opt. 2009 Aug 20;48(24):4723-34.

PMID:
19696861
5.

Characterization of microscope objective lenses from 1,400 to 1,650 nm to evaluate performance for long-wavelength nonlinear microscopy applications.

Keatings SR, Zhang W, McConnell G.

Microsc Res Tech. 2008 Jul;71(7):517-20. doi: 10.1002/jemt.20580.

PMID:
18314867
6.
7.

Two-photon imaging using adaptive phase compensated ultrashort laser pulses.

Xi P, Andegeko Y, Pestov D, Lovozoy VV, Dantus M.

J Biomed Opt. 2009 Jan-Feb;14(1):014002. doi: 10.1117/1.3059629.

PMID:
19256690
8.

Chirped mirrors with low dispersion ripple.

Pervak V, Naumov S, Krausz F, Apolonski A.

Opt Express. 2007 Oct 17;15(21):13768-72.

PMID:
19550647
9.

Gauss-Legendre quadrature method used to evaluate the spatio-temporal intensity of ultrashort pulses in the focal region of lenses.

García-Martínez L, Rosete-Aguilar M, Garduño-Mejia J.

Appl Opt. 2012 Jan 20;51(3):306-15. doi: 10.1364/AO.51.000306.

PMID:
22270657
10.

Wavelength independent grating lens system.

Kato M, Maeda S, Yamagishi F, Ikeda H, Inagaki T.

Appl Opt. 1989 Feb 15;28(4):682-6. doi: 10.1364/AO.28.000682.

PMID:
20548541
11.

Pulse compression in two-photon excitation fluorescence microscopy.

Liang X, Hu W, Fu L.

Opt Express. 2010 Jul 5;18(14):14893-904. doi: 10.1364/OE.18.014893.

PMID:
20639976
12.

Beyond the 1/Tp limit: two-photon-excited fluorescence using pulses as short as sub-10-fs.

Pang S, Yeh AT, Wang C, Meissner KE.

J Biomed Opt. 2009 Sep-Oct;14(5):054041. doi: 10.1117/1.3253388.

PMID:
19895142
13.

Spatial chirp and angular dispersion of a laser crystal for a four-mirror cavity Kerr-lens mode-locked laser.

Zhang R, Ma J, Pang D, Sun J, Wang Q.

Appl Opt. 2004 Apr 1;43(10):2184-91.

PMID:
15074430
14.
15.

Achromatic waveguide lenses.

Spaulding KE, Morris GM.

Appl Opt. 1991 Jun 20;30(18):2558-69. doi: 10.1364/AO.30.002558.

PMID:
20700244
16.

Two-photon excited fluorescence enhancement with broadband versus tunable femtosecond laser pulse excitation.

Wang C, Yeh AT.

J Biomed Opt. 2012 Feb;17(2):025003. doi: 10.1117/1.JBO.17.2.025003.

PMID:
22463029
17.

Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group-delay dispersion.

Curley PF, Spielmann C, Brabec T, Krausz F, Wintner E, Schmidt AJ.

Opt Lett. 1993 Jan 1;18(1):54-6.

PMID:
19798348
18.

Measurement of the laser pulse width on the microscope objective plane by modulated autocorrelation method.

Cannone F, Chirico G, Baldini G, Diaspro A.

J Microsc. 2003 May;210(Pt 2):149-57.

19.

Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy.

Tang S, Krasieva TB, Chen Z, Tempea G, Tromberg BJ.

J Biomed Opt. 2006 Mar-Apr;11(2):020501.

PMID:
16674172
20.

High-dispersive mirrors for high power applications.

Pervak V, Pronin O, Razskazovskaya O, Brons J, Angelov IB, Trubetskov MK, Tikhonravov AV, Krausz F.

Opt Express. 2012 Feb 13;20(4):4503-8. doi: 10.1364/OE.20.004503.

PMID:
22418209

Supplemental Content

Support Center