Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

Retrotransposon target site selection by imitation of a cellular protein.

Brady TL, Fuerst PG, Dick RA, Schmidt C, Voytas DF.

Mol Cell Biol. 2008 Feb;28(4):1230-9. Epub 2007 Dec 17.

2.

Phosphorylation regulates integration of the yeast Ty5 retrotransposon into heterochromatin.

Dai J, Xie W, Brady TL, Gao J, Voytas DF.

Mol Cell. 2007 Jul 20;27(2):289-99.

3.

Targeting integration of the Saccharomyces Ty5 retrotransposon.

Brady TL, Schmidt CL, Voytas DF.

Methods Mol Biol. 2008;435:153-63. doi: 10.1007/978-1-59745-232-8_11.

PMID:
18370074
4.
5.

Stress management: how cells take control of their transposons.

Ebina H, Levin HL.

Mol Cell. 2007 Jul 20;27(2):180-1. Review.

6.

Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning.

Andrulis ED, Zappulla DC, Ansari A, Perrod S, Laiosa CV, Gartenberg MR, Sternglanz R.

Mol Cell Biol. 2002 Dec;22(23):8292-301.

7.

Sir Antagonist 1 (San1) is a ubiquitin ligase.

Dasgupta A, Ramsey KL, Smith JS, Auble DT.

J Biol Chem. 2004 Jun 25;279(26):26830-8. Epub 2004 Apr 12.

8.

Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p.

Xie W, Gai X, Zhu Y, Zappulla DC, Sternglanz R, Voytas DF.

Mol Cell Biol. 2001 Oct;21(19):6606-14.

9.

Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins.

Taddei A, Hediger F, Neumann FR, Bauer C, Gasser SM.

EMBO J. 2004 Mar 24;23(6):1301-12. Epub 2004 Mar 11.

10.
11.

Controlling integration specificity of a yeast retrotransposon.

Zhu Y, Dai J, Fuerst PG, Voytas DF.

Proc Natl Acad Sci U S A. 2003 May 13;100(10):5891-5. Epub 2003 May 1.

12.

Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3.

Chang JF, Hall BE, Tanny JC, Moazed D, Filman D, Ellenberger T.

Structure. 2003 Jun;11(6):637-49. Erratum in: Structure (Camb). 2004 Aug;12(8):1547.

13.

Phylogenetic conservation and homology modeling help reveal a novel domain within the budding yeast heterochromatin protein Sir1.

Hou Z, Danzer JR, Mendoza L, Bose ME, Müller U, Williams B, Fox CA.

Mol Cell Biol. 2009 Feb;29(3):687-702. doi: 10.1128/MCB.00202-08. Epub 2008 Nov 24.

14.

A pivotal role of the coiled coil of Sir4.

Xu RM.

Structure. 2003 Jun;11(6):608-9.

15.

Access to DNA establishes a secondary target site bias for the yeast retrotransposon Ty5.

Baller JA, Gao J, Voytas DF.

Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20351-6. doi: 10.1073/pnas.1103665108. Epub 2011 Jul 25.

16.
17.

SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast.

Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M.

Genes Dev. 1997 Jan 1;11(1):83-93.

18.

Ribosome biogenesis factors bind a nuclear envelope SUN domain protein to cluster yeast telomeres.

Horigome C, Okada T, Shimazu K, Gasser SM, Mizuta K.

EMBO J. 2011 Aug 5;30(18):3799-811. doi: 10.1038/emboj.2011.267.

19.

Domain structure and protein interactions of the silent information regulator Sir3 revealed by screening a nested deletion library of protein fragments.

King DA, Hall BE, Iwamoto MA, Win KZ, Chang JF, Ellenberger T.

J Biol Chem. 2006 Jul 21;281(29):20107-19. Epub 2006 May 22.

20.

Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1.

Moretti P, Freeman K, Coodly L, Shore D.

Genes Dev. 1994 Oct 1;8(19):2257-69.

Items per page

Supplemental Content

Write to the Help Desk