Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.
2.

Design and fabrication of rod-type two-dimensional photonic crystal slabs with large high-order bandgaps in near-infrared wavelengths.

Jiang L, Jia W, Zheng G, Li X.

Opt Lett. 2012 May 1;37(9):1424-6. doi: 10.1364/OL.37.001424.

PMID:
22555692
3.
4.

Fabrication of photonic crystals in ZnS-doped glass.

Takeshima N, Narita Y, Nagata T, Tanaka S, Hirao K.

Opt Lett. 2005 Mar 1;30(5):537-9.

PMID:
15789728
5.

Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material.

Li J, Jia B, Zhou G, Gu M.

Opt Express. 2006 Oct 30;14(22):10740-5.

PMID:
19529482
6.

Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths.

Staude I, Thiel M, Essig S, Wolff C, Busch K, von Freymann G, Wegener M.

Opt Lett. 2010 Apr 1;35(7):1094-6. doi: 10.1364/OL.35.001094.

PMID:
20364228
7.

Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.

Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM.

Nat Mater. 2004 Jul;3(7):444-7. Epub 2004 Jun 13.

PMID:
15195083
8.
9.
10.

Three-dimensional woodpile photonic crystal templates for the infrared spectral range.

Mizeikis V, Seet KK, Juodkazis S, Misawa H.

Opt Lett. 2004 Sep 1;29(17):2061-3.

PMID:
15455780
11.

Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties.

Serbin J, Ovsianikov A, Chichkov B.

Opt Express. 2004 Oct 18;12(21):5221-8.

PMID:
19484080
12.

Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths.

Park SG, Yang SM.

Nanoscale. 2013 May 21;5(10):4110-3. doi: 10.1039/c3nr00644a.

PMID:
23538506
13.

Optical properties of three-dimensional woodpile photonic crystals composed of circular cylinders with planar defect structures.

Chung SH, Yang JY.

Appl Opt. 2011 Dec 20;50(36):6657-66. doi: 10.1364/AO.50.006657.

PMID:
22193196
14.

Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.

Liu J, Fan Z, Xiao H, Zhang W, Guan C, Yuan L.

Appl Opt. 2011 Aug 20;50(24):4868-72. doi: 10.1364/AO.50.004868.

PMID:
21857712
15.

Planar cavity modes in void channel polymer photonic crystals.

Ventura M, Straub M, Gu M.

Opt Express. 2005 Apr 4;13(7):2767-73.

PMID:
19495170
16.

65 nm feature sizes using visible wavelength 3-D multiphoton lithography.

Haske W, Chen VW, Hales JM, Dong W, Barlow S, Marder SR, Perry JW.

Opt Express. 2007 Mar 19;15(6):3426-36.

PMID:
19532584
17.

Large complete bandgaps in a two-dimensional square photonic crystal with isolated single-atom dielectric rods inĀ air.

Yang XL, Cai LZ, Wang YR, Dong GY, Shen XX, Meng XF, Hu Y.

Nanotechnology. 2008 Jan 16;19(2):025201. doi: 10.1088/0957-4484/19/02/025201. Epub 2007 Dec 6.

PMID:
21817535
18.

Complete photonic bandgaps in 12-fold symmetric quasicrystals

Zoorob ME, Charlton MD, Parker GJ, Baumberg JJ, Netti MC.

Nature. 2000 Apr 13;404(6779):740-3.

PMID:
10783882
19.

Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals.

Liu H, Yao J, Xu D, Wang P.

Opt Express. 2007 Jan 22;15(2):695-703.

PMID:
19532292
20.

Control of light emission by 3D photonic crystals.

Ogawa S, Imada M, Yoshimoto S, Okano M, Noda S.

Science. 2004 Jul 9;305(5681):227-9. Epub 2004 Jun 3.

Supplemental Content

Support Center