Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.
2.

Fast adaptation and Ca2+ sensitivity of the mechanotransducer require myosin-XVa in inner but not outer cochlear hair cells.

Stepanyan R, Frolenkov GI.

J Neurosci. 2009 Apr 1;29(13):4023-34. doi: 10.1523/JNEUROSCI.4566-08.2009.

3.

Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea.

Lelli A, Asai Y, Forge A, Holt JR, Géléoc GS.

J Neurophysiol. 2009 Jun;101(6):2961-73. doi: 10.1152/jn.00136.2009.

4.

Harmonin-b, an actin-binding scaffold protein, is involved in the adaptation of mechanoelectrical transduction by sensory hair cells.

Michalski N, Michel V, Caberlotto E, Lefèvre GM, van Aken AF, Tinevez JY, Bizard E, Houbron C, Weil D, Hardelin JP, Richardson GP, Kros CJ, Martin P, Petit C.

Pflugers Arch. 2009 Nov;459(1):115-30. doi: 10.1007/s00424-009-0711-x.

5.

Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice.

Dou H, Vazquez AE, Namkung Y, Chu H, Cardell EL, Nie L, Parson S, Shin HS, Yamoah EN.

J Assoc Res Otolaryngol. 2004 Jun;5(2):215-26.

6.
7.

Imaging hair cell transduction at the speed of sound: dynamic behavior of mammalian stereocilia.

Fridberger A, Tomo I, Ulfendahl M, Boutet de Monvel J.

Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1918-23.

8.

Adaptation of mammalian auditory hair cell mechanotransduction is independent of calcium entry.

Peng AW, Effertz T, Ricci AJ.

Neuron. 2013 Nov 20;80(4):960-72. doi: 10.1016/j.neuron.2013.08.025.

9.

Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells.

Corns LF, Johnson SL, Kros CJ, Marcotti W.

Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14918-23. doi: 10.1073/pnas.1409920111.

10.

Stepwise morphological and functional maturation of mechanotransduction in rat outer hair cells.

Waguespack J, Salles FT, Kachar B, Ricci AJ.

J Neurosci. 2007 Dec 12;27(50):13890-902.

11.

Transduction and adaptation in sensory hair cells of the mammalian vestibular system.

Colclasure JC, Holt JR.

Gravit Space Biol Bull. 2003 Jun;16(2):61-70. Review.

PMID:
12959133
12.
13.

Hair-cell mechanotransduction and cochlear amplification.

LeMasurier M, Gillespie PG.

Neuron. 2005 Nov 3;48(3):403-15. Review.

14.
15.

Effects of salicylate on sound-evoked outer hair cell stereocilia deflections.

Hakizimana P, Fridberger A.

Pflugers Arch. 2015 Sep;467(9):2021-9. doi: 10.1007/s00424-014-1646-4.

PMID:
25392240
16.

Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea.

He DZ, Jia S, Dallos P.

Nature. 2004 Jun 17;429(6993):766-70.

PMID:
15201911
17.

Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer.

Peng AW, Gnanasambandam R, Sachs F, Ricci AJ.

J Neurosci. 2016 Mar 9;36(10):2945-56. doi: 10.1523/JNEUROSCI.3011-15.2016.

18.

Development of outward potassium currents in inner and outer hair cells from the embryonic mouse cochlea.

Helyer RJ, Kennedy HJ, Davies D, Holley MC, Kros CJ.

Audiol Neurootol. 2005 Jan-Feb;10(1):22-34.

PMID:
15486441
19.

Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms.

Kennedy HJ, Evans MG, Crawford AC, Fettiplace R.

J Neurosci. 2006 Mar 8;26(10):2757-66.

20.

The actin-binding proteins eps8 and gelsolin have complementary roles in regulating the growth and stability of mechanosensory hair bundles of mammalian cochlear outer hair cells.

Olt J, Mburu P, Johnson SL, Parker A, Kuhn S, Bowl M, Marcotti W, Brown SD.

PLoS One. 2014 Jan 27;9(1):e87331. doi: 10.1371/journal.pone.0087331.

Items per page

Supplemental Content

Support Center