Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production.

Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, Van Remmen H.

Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1159-68.

2.

Dietary restriction attenuates age-associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD.

Jang YC, Liu Y, Hayworth CR, Bhattacharya A, Lustgarten MS, Muller FL, Chaudhuri A, Qi W, Li Y, Huang JY, Verdin E, Richardson A, Van Remmen H.

Aging Cell. 2012 Oct;11(5):770-82. doi: 10.1111/j.1474-9726.2012.00843.x.

3.

Oxidative stress in skeletal muscle stimulates early expression of Rad in a mouse model of amyotrophic lateral sclerosis.

Halter B, Gonzalez de Aguilar JL, Rene F, Petri S, Fricker B, Echaniz-Laguna A, Dupuis L, Larmet Y, Loeffler JP.

Free Radic Biol Med. 2010 Apr 1;48(7):915-23. doi: 10.1016/j.freeradbiomed.2010.01.014.

PMID:
20079427
4.

Skeletal muscle weakness due to deficiency of CuZn-superoxide dismutase is associated with loss of functional innervation.

Larkin LM, Davis CS, Sims-Robinson C, Kostrominova TY, Van Remmen H, Richardson A, Feldman EL, Brooks SV.

Am J Physiol Regul Integr Comp Physiol. 2011 Nov;301(5):R1400-7. doi: 10.1152/ajpregu.00093.2011.

5.

Anti-skeletal muscle atrophy effect of Oenothera odorata root extract via reactive oxygen species-dependent signaling pathways in cellular and mouse model.

Lee YH, Kim WJ, Lee MH, Kim SY, Seo DH, Kim HS, Gelinsky M, Kim TJ.

Biosci Biotechnol Biochem. 2015;80(1):80-8. doi: 10.1080/09168451.2015.1075861.

PMID:
26613402
6.

Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy.

Min K, Smuder AJ, Kwon OS, Kavazis AN, Szeto HH, Powers SK.

J Appl Physiol (1985). 2011 Nov;111(5):1459-66. doi: 10.1152/japplphysiol.00591.2011.

7.

Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle.

Tamura Y, Kitaoka Y, Matsunaga Y, Hoshino D, Hatta H.

J Physiol. 2015 Jun 15;593(12):2707-20. doi: 10.1113/JP270093.

8.

Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model.

Luo G, Yi J, Ma C, Xiao Y, Yi F, Yu T, Zhou J.

PLoS One. 2013 Dec 6;8(12):e82112. doi: 10.1371/journal.pone.0082112.

9.

Glycoprotein nonmetastatic melanoma protein B ameliorates skeletal muscle lesions in a SOD1G93A mouse model of amyotrophic lateral sclerosis.

Nagahara Y, Shimazawa M, Tanaka H, Ono Y, Noda Y, Ohuchi K, Tsuruma K, Katsuno M, Sobue G, Hara H.

J Neurosci Res. 2015 Oct;93(10):1552-66. doi: 10.1002/jnr.23619.

PMID:
26140698
10.

Skeletal muscle is a primary target of SOD1G93A-mediated toxicity.

Dobrowolny G, Aucello M, Rizzuto E, Beccafico S, Mammucari C, Boncompagni S, Belia S, Wannenes F, Nicoletti C, Del Prete Z, Rosenthal N, Molinaro M, Protasi F, Fanò G, Sandri M, Musarò A.

Cell Metab. 2008 Nov;8(5):425-36. doi: 10.1016/j.cmet.2008.09.002. Erratum in: Cell Metab. 2009 Jan;9(1):110. Bonconpagni, Simona [corrected to Boncompagni, Simona].

11.

Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle.

Adhihetty PJ, O'Leary MF, Chabi B, Wicks KL, Hood DA.

J Appl Physiol (1985). 2007 Mar;102(3):1143-51.

12.

Impaired bone homeostasis in amyotrophic lateral sclerosis mice with muscle atrophy.

Zhu K, Yi J, Xiao Y, Lai Y, Song P, Zheng W, Jiao H, Fan J, Wu C, Chen D, Zhou J, Xiao G.

J Biol Chem. 2015 Mar 27;290(13):8081-94. doi: 10.1074/jbc.M114.603985.

13.

Increased mitochondrial matrix-directed superoxide production by fatty acid hydroperoxides in skeletal muscle mitochondria.

Bhattacharya A, Lustgarten M, Shi Y, Liu Y, Jang YC, Pulliam D, Jernigan AL, Van Remmen H.

Free Radic Biol Med. 2011 Mar 1;50(5):592-601. doi: 10.1016/j.freeradbiomed.2010.12.014.

14.
15.

Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy.

Kuwahara H, Horie T, Ishikawa S, Tsuda C, Kawakami S, Noda Y, Kaneko T, Tahara S, Tachibana T, Okabe M, Melki J, Takano R, Toda T, Morikawa D, Nojiri H, Kurosawa H, Shirasawa T, Shimizu T.

Free Radic Biol Med. 2010 May 1;48(9):1252-62. doi: 10.1016/j.freeradbiomed.2010.02.011.

PMID:
20156551
16.
17.

Molecular signatures of amyotrophic lateral sclerosis disease progression in hind and forelimb muscles of an SOD1(G93A) mouse model.

Capitanio D, Vasso M, Ratti A, Grignaschi G, Volta M, Moriggi M, Daleno C, Bendotti C, Silani V, Gelfi C.

Antioxid Redox Signal. 2012 Nov 15;17(10):1333-50. doi: 10.1089/ars.2012.4524.

18.

Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS.

Da Cruz S, Parone PA, Lopes VS, Lillo C, McAlonis-Downes M, Lee SK, Vetto AP, Petrosyan S, Marsala M, Murphy AN, Williams DS, Spiegelman BM, Cleveland DW.

Cell Metab. 2012 May 2;15(5):778-86. doi: 10.1016/j.cmet.2012.03.019.

19.

Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals a reduction in Akt and an increase in atrogin-1.

Léger B, Vergani L, Sorarù G, Hespel P, Derave W, Gobelet C, D'Ascenzio C, Angelini C, Russell AP.

FASEB J. 2006 Mar;20(3):583-5.

Items per page

Supplemental Content

Support Center