Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

MicroRNA-133 controls cardiac hypertrophy.

Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G.

Nat Med. 2007 May;13(5):613-8. Epub 2007 Apr 29.

PMID:
17468766
2.

MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice.

Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ.

J Clin Invest. 2009 Sep;119(9):2772-86. doi: 10.1172/JCI36154. Epub 2009 Aug 10.

3.

MicroRNAs control gene expression: importance for cardiac development and pathophysiology.

Catalucci D, Latronico MV, Condorelli G.

Ann N Y Acad Sci. 2008 Mar;1123:20-9. doi: 10.1196/annals.1420.004. Review.

PMID:
18375574
4.

miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling.

Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE.

Circ Res. 2009 Jan 30;104(2):170-8, 6p following 178. doi: 10.1161/CIRCRESAHA.108.182535. Epub 2008 Dec 18.

5.

Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice.

Wang J, Song Y, Zhang Y, Xiao H, Sun Q, Hou N, Guo S, Wang Y, Fan K, Zhan D, Zha L, Cao Y, Li Z, Cheng X, Zhang Y, Yang X.

Cell Res. 2012 Mar;22(3):516-27. doi: 10.1038/cr.2011.132. Epub 2011 Aug 16.

6.

Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy.

Li Q, Song XW, Zou J, Wang GK, Kremneva E, Li XQ, Zhu N, Sun T, Lappalainen P, Yuan WJ, Qin YW, Jing Q.

J Cell Sci. 2010 Jul 15;123(Pt 14):2444-52. doi: 10.1242/jcs.067165. Epub 2010 Jun 22. Erratum in: J Cell Sci. 2010 Aug 1;123(Pt 15):2680.

7.

MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors.

Ganesan J, Ramanujam D, Sassi Y, Ahles A, Jentzsch C, Werfel S, Leierseder S, Loyer X, Giacca M, Zentilin L, Thum T, Laggerbauer B, Engelhardt S.

Circulation. 2013 May 28;127(21):2097-106. doi: 10.1161/CIRCULATIONAHA.112.000882. Epub 2013 Apr 26.

8.

MicroRNA-328 as a regulator of cardiac hypertrophy.

Li C, Li X, Gao X, Zhang R, Zhang Y, Liang H, Xu C, Du W, Zhang Y, Liu X, Ma N, Xu Z, Wang L, Chen X, Lu Y, Ju J, Yang B, Shan H.

Int J Cardiol. 2014 May 1;173(2):268-76. doi: 10.1016/j.ijcard.2014.02.035. Epub 2014 Feb 28.

PMID:
24631114
9.

miR133a regulates cardiomyocyte hypertrophy in diabetes.

Feng B, Chen S, George B, Feng Q, Chakrabarti S.

Diabetes Metab Res Rev. 2010 Jan;26(1):40-9. doi: 10.1002/dmrr.1054.

PMID:
20013939
10.

Target identification of microRNAs expressed highly in human embryonic stem cells.

Li SS, Yu SL, Kao LP, Tsai ZY, Singh S, Chen BZ, Ho BC, Liu YH, Yang PC.

J Cell Biochem. 2009 Apr 15;106(6):1020-30. doi: 10.1002/jcb.22084.

PMID:
19229866
11.

Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis.

van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN.

Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13027-32. doi: 10.1073/pnas.0805038105. Epub 2008 Aug 22.

12.

Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells.

Hohjoh H, Fukushima T.

Biochem Biophys Res Commun. 2007 Oct 19;362(2):360-7. Epub 2007 Aug 13.

PMID:
17716626
13.

The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy.

Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, Remke J, Caprio M, Jentzsch C, Engelhardt S, Geisendorf S, Glas C, Hofmann TG, Nessling M, Richter K, Schiffer M, Carrier L, Napp LC, Bauersachs J, Chowdhury K, Thum T.

Nat Commun. 2012;3:1078. doi: 10.1038/ncomms2090.

14.

Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy.

Huang S, Zou X, Zhu JN, Fu YH, Lin QX, Liang YY, Deng CY, Kuang SJ, Zhang MZ, Liao YL, Zheng XL, Yu XY, Shan ZX.

J Cell Mol Med. 2015 Mar;19(3):608-19. doi: 10.1111/jcmm.12445. Epub 2015 Jan 13.

15.

MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression.

Wang C, Wang S, Zhao P, Wang X, Wang J, Wang Y, Song L, Zou Y, Hui R.

J Cell Biochem. 2012 Jun;113(6):2040-6. doi: 10.1002/jcb.24075.

PMID:
22275134
16.

Role of microRNAs in cardiac hypertrophy and heart failure.

Wang N, Zhou Z, Liao X, Zhang T.

IUBMB Life. 2009 Jun;61(6):566-71. doi: 10.1002/iub.204. Review.

17.

miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy.

Wang K, Long B, Zhou J, Li PF.

J Biol Chem. 2010 Apr 16;285(16):11903-12. doi: 10.1074/jbc.M109.098004. Epub 2010 Feb 21.

18.

MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2.

Tang Y, Zheng J, Sun Y, Wu Z, Liu Z, Huang G.

Int Heart J. 2009 May;50(3):377-87.

19.

Overexpression of miR-223 Tips the Balance of Pro- and Anti-hypertrophic Signaling Cascades toward Physiologic Cardiac Hypertrophy.

Yang L, Li Y, Wang X, Mu X, Qin D, Huang W, Alshahrani S, Nieman M, Peng J, Essandoh K, Peng T, Wang Y, Lorenz J, Soleimani M, Zhao ZQ, Fan GC.

J Biol Chem. 2016 Jul 22;291(30):15700-13. doi: 10.1074/jbc.M116.715805. Epub 2016 May 20.

PMID:
27226563
20.

The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489.

Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF.

Circ Res. 2014 Apr 25;114(9):1377-88. doi: 10.1161/CIRCRESAHA.114.302476. Epub 2014 Feb 20.

Supplemental Content

Support Center