Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 222

1.

Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes.

Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V.

J Neurosci. 2007 Mar 21;27(12):3078-89.

2.

Origins of cortical interneuron subtypes.

Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA.

J Neurosci. 2004 Mar 17;24(11):2612-22.

3.

Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants.

Zhao Y, Flandin P, Long JE, Cuesta MD, Westphal H, Rubenstein JL.

J Comp Neurol. 2008 Sep 1;510(1):79-99. doi: 10.1002/cne.21772.

4.

The LIM homeodomain protein Lhx6 regulates maturation of interneurons and network excitability in the mammalian cortex.

Neves G, Shah MM, Liodis P, Achimastou A, Denaxa M, Roalfe G, Sesay A, Walker MC, Pachnis V.

Cereb Cortex. 2013 Aug;23(8):1811-23. doi: 10.1093/cercor/bhs159. Epub 2012 Jun 17.

5.

NKX2.1 specifies cortical interneuron fate by activating Lhx6.

Du T, Xu Q, Ocbina PJ, Anderson SA.

Development. 2008 Apr;135(8):1559-67. doi: 10.1242/dev.015123. Epub 2008 Mar 13.

6.

Origin and molecular specification of striatal interneurons.

Marin O, Anderson SA, Rubenstein JL.

J Neurosci. 2000 Aug 15;20(16):6063-76.

7.

Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position.

Vogt D, Hunt RF, Mandal S, Sandberg M, Silberberg SN, Nagasawa T, Yang Z, Baraban SC, Rubenstein JL.

Neuron. 2014 Apr 16;82(2):350-64. doi: 10.1016/j.neuron.2014.02.030.

8.
9.

The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex.

Rubin AN, Alfonsi F, Humphreys MP, Choi CK, Rocha SF, Kessaris N.

J Neurosci. 2010 Sep 8;30(36):12050-62. doi: 10.1523/JNEUROSCI.6178-09.2010.

10.

Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons.

Miyoshi G, Young A, Petros T, Karayannis T, McKenzie Chang M, Lavado A, Iwano T, Nakajima M, Taniguchi H, Huang ZJ, Heintz N, Oliver G, Matsuzaki F, Machold RP, Fishell G.

J Neurosci. 2015 Sep 16;35(37):12869-89. doi: 10.1523/JNEUROSCI.1164-15.2015.

11.

Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons.

Wang Y, Dye CA, Sohal V, Long JE, Estrada RC, Roztocil T, Lufkin T, Deisseroth K, Baraban SC, Rubenstein JL.

J Neurosci. 2010 Apr 14;30(15):5334-45. doi: 10.1523/JNEUROSCI.5963-09.2010.

12.

Neuronal activity is required for the development of specific cortical interneuron subtypes.

De Marco García NV, Karayannis T, Fishell G.

Nature. 2011 Apr 21;472(7343):351-5. doi: 10.1038/nature09865. Epub 2011 Apr 3.

13.

Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors.

Nóbrega-Pereira S, Kessaris N, Du T, Kimura S, Anderson SA, Marín O.

Neuron. 2008 Sep 11;59(5):733-45. doi: 10.1016/j.neuron.2008.07.024.

14.

RhoA and Cdc42 are required in pre-migratory progenitors of the medial ganglionic eminence ventricular zone for proper cortical interneuron migration.

Katayama K, Imai F, Campbell K, Lang RA, Zheng Y, Yoshida Y.

Development. 2013 Aug;140(15):3139-45. doi: 10.1242/dev.092585.

15.

Cortical interneuron fate determination: diverse sources for distinct subtypes?

Xu Q, de la Cruz E, Anderson SA.

Cereb Cortex. 2003 Jun;13(6):670-6. Review.

PMID:
12764043
16.

Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex.

Myers AK, Meechan DW, Adney DR, Tucker ES.

J Neurosci. 2014 Jun 4;34(23):7787-801. doi: 10.1523/JNEUROSCI.4695-13.2014.

17.

Altered proliferative ability of neuronal progenitors in PlexinA1 mutant mice.

Andrews WD, Davidson K, Tamamaki N, Ruhrberg C, Parnavelas JG.

J Comp Neurol. 2016 Feb 15;524(3):518-34. doi: 10.1002/cne.23806. Epub 2015 Jul 1.

18.

Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors.

Miyoshi G, Butt SJ, Takebayashi H, Fishell G.

J Neurosci. 2007 Jul 18;27(29):7786-98.

19.

Molecules and mechanisms involved in the generation and migration of cortical interneurons.

Hernández-Miranda LR, Parnavelas JG, Chiara F.

ASN Neuro. 2010 Mar 31;2(2):e00031. doi: 10.1042/AN20090053. Review.

20.

Maturation-promoting activity of SATB1 in MGE-derived cortical interneurons.

Denaxa M, Kalaitzidou M, Garefalaki A, Achimastou A, Lasrado R, Maes T, Pachnis V.

Cell Rep. 2012 Nov 29;2(5):1351-62. doi: 10.1016/j.celrep.2012.10.003. Epub 2012 Nov 8.

Supplemental Content

Support Center