Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 134

1.
2.

Silencing or permanent activation: host-cell responses in models of persistent Chlamydia pneumoniae infection.

Peters J, Hess S, Endlich K, Thalmann J, Holzberg D, Kracht M, Schaefer M, Bartling G, Klos A.

Cell Microbiol. 2005 Aug;7(8):1099-108.

PMID:
16008577
3.

Up-regulation of host cell genes during interferon-gamma-induced persistent Chlamydia pneumoniae infection in HL cells.

Mannonen L, Nikula T, Haveri A, Reinikainen A, Vuola JM, Lahesmaa R, Puolakkainen M.

J Infect Dis. 2007 Jan 15;195(2):212-9. Epub 2006 Dec 13.

PMID:
17191166
4.

Chlamydia pneumoniae expresses genes required for DNA replication but not cytokinesis during persistent infection of HEp-2 cells.

Byrne GI, Ouellette SP, Wang Z, Rao JP, Lu L, Beatty WL, Hudson AP.

Infect Immun. 2001 Sep;69(9):5423-9.

5.

The transcript profile of persistent Chlamydophila (Chlamydia) pneumoniae in vitro depends on the means by which persistence is induced.

Klos A, Thalmann J, Peters J, Gérard HC, Hudson AP.

FEMS Microbiol Lett. 2009 Feb;291(1):120-6. doi: 10.1111/j.1574-6968.2008.01446.x. Epub 2008 Dec 9.

6.

Proteomic analysis of differentially expressed Chlamydia pneumoniae genes during persistent infection of HEp-2 cells.

Molestina RE, Klein JB, Miller RD, Pierce WH, Ramirez JA, Summersgill JT.

Infect Immun. 2002 Jun;70(6):2976-81.

7.

Differential transcriptional responses between the interferon-gamma-induction and iron-limitation models of persistence for Chlamydia pneumoniae.

Timms P, Good D, Wan C, Theodoropoulos C, Mukhopadhyay S, Summersgill J, Mathews S.

J Microbiol Immunol Infect. 2009 Feb;42(1):27-37.

PMID:
19424556
8.

Serotonin and melatonin, neurohormones for homeostasis, as novel inhibitors of infections by the intracellular parasite chlamydia.

Rahman MA, Azuma Y, Fukunaga H, Murakami T, Sugi K, Fukushi H, Miura K, Suzuki H, Shirai M.

J Antimicrob Chemother. 2005 Nov;56(5):861-8. Epub 2005 Sep 19.

PMID:
16172105
9.

Expression of bacterial genes and induction of INF-gamma in human myeloid dendritic cells during persistent infection with Chlamydophila pneumoniae.

Kis Z, Treso B, Burian K, Endresz V, Pallinger E, Nagy A, Toth A, Takacs M, Falus A, Gonczol E.

FEMS Immunol Med Microbiol. 2008 Apr;52(3):324-34. doi: 10.1111/j.1574-695X.2007.00367.x. Epub 2008 Feb 27.

10.

Temporal expression of type III secretion genes of Chlamydia pneumoniae.

Slepenkin A, Motin V, de la Maza LM, Peterson EM.

Infect Immun. 2003 May;71(5):2555-62.

11.

The reprogrammed host: Chlamydia trachomatis-induced up-regulation of glycoprotein 130 cytokines, transcription factors, and antiapoptotic genes.

Hess S, Rheinheimer C, Tidow F, Bartling G, Kaps C, Lauber J, Buer J, Klos A.

Arthritis Rheum. 2001 Oct;44(10):2392-401.

PMID:
11665982
12.

Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation.

Belland RJ, Nelson DE, Virok D, Crane DD, Hogan D, Sturdevant D, Beatty WL, Caldwell HD.

Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15971-6. Epub 2003 Dec 12.

13.

Chlamydia pneumoniae-induced memory CD4+ T-cell activation in human peripheral blood correlates with distinct antibody response patterns.

Bunk S, Schaffert H, Schmid B, Goletz C, Zeller S, Borisova M, Kern F, Rupp J, Hermann C.

Clin Vaccine Immunol. 2010 May;17(5):705-12. doi: 10.1128/CVI.00209-09. Epub 2010 Mar 10.

14.

Action and reaction: Chlamydophila pneumoniae proteome alteration in a persistent infection induced by iron deficiency.

Wehrl W, Meyer TF, Jungblut PR, Müller EC, Szczepek AJ.

Proteomics. 2004 Oct;4(10):2969-81.

PMID:
15378754
15.

Role of IRAK4 and IRF3 in the control of intracellular infection with Chlamydia pneumoniae.

Trumstedt C, Eriksson E, Lundberg AM, Yang TB, Yan ZQ, Wigzell H, Rottenberg ME.

J Leukoc Biol. 2007 Jun;81(6):1591-8. Epub 2007 Mar 14.

PMID:
17360955
16.

The resistance of human monocyte-derived macrophages to Chlamydia pneumoniae infection is enhanced by interferon-gamma.

Airenne S, Surcel HM, Bloigu A, Laitinen K, Saikku P, Laurila A.

APMIS. 2000 Feb;108(2):139-44.

PMID:
10737459
17.

Persistent Chlamydia trachomatis infection of HeLa cells mediates apoptosis resistance through a Chlamydia protease-like activity factor-independent mechanism and induces high mobility group box 1 release.

Rödel J, Grosse C, Yu H, Wolf K, Otto GP, Liebler-Tenorio E, Forsbach-Birk V, Straube E.

Infect Immun. 2012 Jan;80(1):195-205. doi: 10.1128/IAI.05619-11. Epub 2011 Oct 24.

18.

Inhibition of apoptosis in neuronal cells infected with Chlamydophila (Chlamydia) pneumoniae.

Appelt DM, Roupas MR, Way DS, Bell MG, Albert EV, Hammond CJ, Balin BJ.

BMC Neurosci. 2008 Jan 24;9:13. doi: 10.1186/1471-2202-9-13.

19.

Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins.

Müller N, Sattelmacher F, Lugert R, Gross U.

Med Microbiol Immunol. 2008 Dec;197(4):387-96. doi: 10.1007/s00430-008-0097-y. Epub 2008 May 1.

20.

Analysis of gene expression in penicillin G induced persistence of Chlamydia pneumoniae.

Di Pietro M, Tramonti A, De Santis F, De Biase D, Schiavoni G, Filardo S, Zagaglia C, Sessa R.

J Biol Regul Homeost Agents. 2012 Apr-Jun;26(2):277-84.

PMID:
22824742

Supplemental Content

Support Center