Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Genome-wide identification of spliced introns using a tiling microarray.

Zhang Z, Hesselberth JR, Fields S.

Genome Res. 2007 Apr;17(4):503-9. Epub 2007 Mar 9.

2.

Isolation and characterization of the gene encoding yeast debranching enzyme.

Chapman KB, Boeke JD.

Cell. 1991 May 3;65(3):483-92.

PMID:
1850323
3.
4.

Sequencing of lariat termini in S. cerevisiae reveals 5' splice sites, branch points, and novel splicing events.

Qin D, Huang L, Wlodaver A, Andrade J, Staley JP.

RNA. 2016 Feb;22(2):237-53. doi: 10.1261/rna.052829.115. Epub 2015 Dec 8.

6.

Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays.

Clark TA, Sugnet CW, Ares M Jr.

Science. 2002 May 3;296(5569):907-10.

7.

Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation.

Nam K, Lee G, Trambley J, Devine SE, Boeke JD.

Mol Cell Biol. 1997 Feb;17(2):809-18.

8.

A homolog of lariat-debranching enzyme modulates turnover of branched RNA.

Garrey SM, Katolik A, Prekeris M, Li X, York K, Bernards S, Fields S, Zhao R, Damha MJ, Hesselberth JR.

RNA. 2014 Aug;20(8):1337-48. doi: 10.1261/rna.044602.114. Epub 2014 Jun 11.

9.

Prp43: An RNA helicase-like factor involved in spliceosome disassembly.

Arenas JE, Abelson JN.

Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11798-802.

10.

High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing.

Juneau K, Palm C, Miranda M, Davis RW.

Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1522-7. Epub 2007 Jan 23.

11.

Mutation of the conserved first nucleotide of a group II intron from yeast mitochondrial DNA reduces the rate but allows accurate splicing.

Peebles CL, Belcher SM, Zhang M, Dietrich RC, Perlman PS.

J Biol Chem. 1993 Jun 5;268(16):11929-38.

12.

Computational and experimental approaches double the number of known introns in the pathogenic yeast Candida albicans.

Mitrovich QM, Tuch BB, Guthrie C, Johnson AD.

Genome Res. 2007 Apr;17(4):492-502. Epub 2007 Mar 9.

13.

RNA splicing and debranching viewed through analysis of RNA lariats.

Cheng Z, Menees TM.

Mol Genet Genomics. 2011 Dec;286(5-6):395-410. doi: 10.1007/s00438-011-0635-y. Epub 2011 Nov 8.

PMID:
22065066
14.

Correlation between the secondary structure of pre-mRNA introns and the efficiency of splicing in Saccharomyces cerevisiae.

Rogic S, Montpetit B, Hoos HH, Mackworth AK, Ouellette BF, Hieter P.

BMC Genomics. 2008 Jul 29;9:355. doi: 10.1186/1471-2164-9-355.

15.

Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae.

Spingola M, Grate L, Haussler D, Ares M Jr.

RNA. 1999 Feb;5(2):221-34.

16.
17.

The spliceosome catalyzes debranching in competition with reverse of the first chemical reaction.

Tseng CK, Cheng SC.

RNA. 2013 Jul;19(7):971-81. doi: 10.1261/rna.038638.113. Epub 2013 May 16.

18.

Rapid, transcript-specific changes in splicing in response to environmental stress.

Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C.

Mol Cell. 2007 Sep 21;27(6):928-37.

19.

Widespread impact of nonsense-mediated mRNA decay on the yeast intronome.

Sayani S, Janis M, Lee CY, Toesca I, Chanfreau GF.

Mol Cell. 2008 Aug 8;31(3):360-70. doi: 10.1016/j.molcel.2008.07.005.

20.

Reverse self-splicing of group II intron RNAs in vitro.

Augustin S, Müller MW, Schweyen RJ.

Nature. 1990 Jan 25;343(6256):383-6.

PMID:
1689013

Supplemental Content

Support Center