Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 166

1.

Reduction of hexavalent chromium by human cytochrome b5: generation of hydroxyl radical and superoxide.

Borthiry GR, Antholine WE, Kalyanaraman B, Myers JM, Myers CR.

Free Radic Biol Med. 2007 Mar 15;42(6):738-55; discussion 735-7. Epub 2006 Dec 15.

2.

Addition of DNA to Cr(VI) and cytochrome b5 containing proteoliposomes leads to generation of DNA strand breaks and Cr(III) complexes.

Borthiry GR, Antholine WE, Myers JM, Myers CR.

Chem Biodivers. 2008 Aug;5(8):1545-57. doi: 10.1002/cbdv.200890143.

3.

Cytochrome b(5) plays a key role in human microsomal chromium(VI) reduction.

Jannetto PJ, Antholine WE, Myers CR.

Toxicology. 2001 Feb 28;159(3):119-33.

PMID:
11223168
4.
5.
6.

Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.

Leonard S, Wang S, Zang L, Castranova V, Vallyathan V, Shi X.

J Environ Pathol Toxicol Oncol. 2000;19(1-2):49-60.

PMID:
10905508
8.
9.

Chromium(VI)-induced nuclear factor-kappa B activation in intact cells via free radical reactions.

Ye J, Zhang X, Young HA, Mao Y, Shi X.

Carcinogenesis. 1995 Oct;16(10):2401-5.

PMID:
7586142
10.
11.

The role of hydroxyl radical as a messenger in Cr(VI)-induced p53 activation.

Wang S, Leonard SS, Ye J, Ding M, Shi X.

Am J Physiol Cell Physiol. 2000 Sep;279(3):C868-75.

12.

Reductive activation of Cr(Vi) by nitric oxide synthase.

Porter R, Jáchymová M, Martásek P, Kalyanaraman B, Vásquez-Vivar J.

Chem Res Toxicol. 2005 May;18(5):834-43.

PMID:
15892577
13.

Reductive activation of hexavalent chromium by human lung epithelial cells: generation of Cr(V) and Cr(V)-thiol species.

Borthiry GR, Antholine WE, Myers JM, Myers CR.

J Inorg Biochem. 2008 Jul;102(7):1449-62. doi: 10.1016/j.jinorgbio.2007.12.030. Epub 2008 Jan 8.

14.

ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH.

Rashba-Step J, Turro NJ, Cederbaum AI.

Arch Biochem Biophys. 1993 Jan;300(1):391-400.

PMID:
8380968
16.

Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH.

Velayutham M, Hemann C, Zweier JL.

Free Radic Biol Med. 2011 Jul 1;51(1):160-70. doi: 10.1016/j.freeradbiomed.2011.04.007. Epub 2011 Apr 13.

17.

Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment.

Rashba-Step J, Turro NJ, Cederbaum AI.

Arch Biochem Biophys. 1993 Jan;300(1):401-8.

PMID:
8380969
19.

One-electron reduction of chromate by NADPH-dependent glutathione reductase.

Shi XL, Dalal NS.

J Inorg Biochem. 1990 Sep;40(1):1-12.

PMID:
2178178
20.

Activated oxygen generation from thylakoids: a novel spin trap.

Sgherri CL, Pinzino C, Samaritani E, Navari-Izzo F.

Free Radic Res. 1999 Dec;31 Suppl:S199-204.

PMID:
10694060

Supplemental Content

Support Center