Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 400

1.

Supervised group Lasso with applications to microarray data analysis.

Ma S, Song X, Huang J.

BMC Bioinformatics. 2007 Feb 22;8:60.

2.

Clustering threshold gradient descent regularization: with applications to microarray studies.

Ma S, Huang J.

Bioinformatics. 2007 Feb 15;23(4):466-72. Epub 2006 Dec 20.

PMID:
17182700
3.
4.

PACK: Profile Analysis using Clustering and Kurtosis to find molecular classifiers in cancer.

Teschendorff AE, Naderi A, Barbosa-Morais NL, Caldas C.

Bioinformatics. 2006 Sep 15;22(18):2269-75. Epub 2006 May 8.

PMID:
16682424
5.

Response projected clustering for direct association with physiological and clinical response data.

Yi SG, Park T, Lee JK.

BMC Bioinformatics. 2008 Jan 31;9:76. doi: 10.1186/1471-2105-9-76.

6.
7.

Predicting survival from microarray data--a comparative study.

Bøvelstad HM, Nygård S, Størvold HL, Aldrin M, Borgan Ø, Frigessi A, Lingjaerde OC.

Bioinformatics. 2007 Aug 15;23(16):2080-7. Epub 2007 Jun 6.

PMID:
17553857
8.

Investigation of self-organizing oscillator networks for use in clustering microarray data.

Salem SA, Jack LB, Nandi AK.

IEEE Trans Nanobioscience. 2008 Mar;7(1):65-79. doi: 10.1109/TNB.2008.2000151.

PMID:
18334457
10.

Classification of microarray data with factor mixture models.

Martella F.

Bioinformatics. 2006 Jan 15;22(2):202-8. Epub 2005 Nov 15.

PMID:
16287938
11.

Large scale data mining approach for gene-specific standardization of microarray gene expression data.

Yoon S, Yang Y, Choi J, Seong J.

Bioinformatics. 2006 Dec 1;22(23):2898-904. Epub 2006 Oct 10.

PMID:
17032674
12.

Improved variance estimation of classification performance via reduction of bias caused by small sample size.

Wickenberg-Bolin U, Göransson H, Fryknäs M, Gustafsson MG, Isaksson A.

BMC Bioinformatics. 2006 Mar 13;7:127.

13.

Additive risk survival model with microarray data.

Ma S, Huang J.

BMC Bioinformatics. 2007 Jun 8;8:192.

14.

A stable gene selection in microarray data analysis.

Yang K, Cai Z, Li J, Lin G.

BMC Bioinformatics. 2006 Apr 27;7:228.

15.

Bagging linear sparse Bayesian learning models for variable selection in cancer diagnosis.

Lu C, Devos A, Suykens JA, Arús C, Van Huffel S.

IEEE Trans Inf Technol Biomed. 2007 May;11(3):338-47.

PMID:
17521084
16.

Coclustering of human cancer microarrays using Minimum Sum-Squared Residue coclustering.

Cho H, Dhillon IS.

IEEE/ACM Trans Comput Biol Bioinform. 2008 Jul-Sep;5(3):385-400. doi: 10.1109/TCBB.2007.70268.

PMID:
18670042
17.

An efficient semi-unsupervised gene selection method via spectral biclustering.

Liu B, Wan C, Wang L.

IEEE Trans Nanobioscience. 2006 Jun;5(2):110-4.

PMID:
16805107
19.

Effects of replacing the unreliable cDNA microarray measurements on the disease classification based on gene expression profiles and functional modules.

Wang D, Lv Y, Guo Z, Li X, Li Y, Zhu J, Yang D, Xu J, Wang C, Rao S, Yang B.

Bioinformatics. 2006 Dec 1;22(23):2883-9. Epub 2006 Jun 29.

PMID:
16809389
20.

A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis.

Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S.

Bioinformatics. 2005 Mar 1;21(5):631-43. Epub 2004 Sep 16.

PMID:
15374862

Supplemental Content

Support Center